Thus, we propose that the safe (at low doses) yet more potent NMDA receptor antagonist, ketamine, may act to normalise a perturbed glutamatergic system and increase synaptogenesis in the short term. This 'kickstart' via ketamine could then allow zinc supplementation and other forms of treatment to enhance recovery in AN. BACKGROUND Increasing evidence suggests that ultrasound (US) imaging may provide biomarkers and therapeutic options in mental disorders. https://www.selleckchem.com/products/3-aminobenzamide.html We systematically reviewed the literature to provide a global overview of the possibilities of US for psychiatry. METHODS Original English language articles published between January 2000 and September 2019 were identified through databases searching and analyzed to summarize existing evidence according to PRISMA methodology. RESULTS A total of 81 articles were included. Various US techniques and markers have been used in mental disorders, including Transcranial Doppler and Intima-Media Thickness. Most of the studies have focused on characterizing the pathophysiology of mental disorders, especially vascular physiology. Studies on therapeutic applications are still scarce. DISCUSSION US imaging has proved to be useful in characterizing vascular impairment and structural and functional brain changes in mental disorders. Preliminary findings also suggest potential interests for therapeutic applications. Growing evidence suggests that US imaging could provide a non-invasive, portable and low-cost tool for pathophysiological characterization, prognostic assessment and therapeutic applications in mental disorders. Studies on gene x environment interaction (GxE) have provided vital information for uncovering the origins of complex diseases. When considering the etiology of bipolar disorder (BD), the role of such interactions is unknown. Here, we tested whether trauma during childhood could modify the effect of two polymorphisms in the CACNA1C gene (rs1006737 and rs4765913) in terms of susceptibility to BD. The study enrolled 878 Caucasian young adults in a cross-sectional population-based survey. BD diagnosis was performed using a clinical interview MINI 5.0, and trauma was assessed with the childhood trauma questionnaire (CTQ). Binary logistic regression models were employed to test the main effects of polymorphisms, haplotypes, and GxE interactions using sex as a confounder. We did not observe an association between the polymorphisms and diagnosis of BD. However, we noted that childhood trauma modified the effect of the rs4765913 polymorphism (p = .018) and the AA haplotype (rs1006737 - rs4765913) (p = .018) on BD susceptibility. A allele carriers of the rs4765913 polymorphism or the AA haplotype exposed to childhood trauma are more likely to develop BD compared to the individuals without a genetic risk. Thus, this study showed that the risk of developing BD in individuals exposed to childhood trauma was influenced by the individual's genetic background, varying according to the CACNA1C genotypes. INTRODUCTION Major depressive disorder (MDD) is a severe mental disorder with a neurobiological basis that is poorly understood. Several studies demonstrated widespread, functional and neurometabolic alterations in MDD. However, little is known about whole brain neurometabolic alterations in MDD. METHOD Thirty-two patients with MDD and 32 paired on a one-to-one basis healthy controls (CTRL) underwent 1H-whole brain spectroscopic (1H-WBS) imaging. Lobar and cerebellar metabolite concentrations of brain N-acetylaspartate (NAA), total choline (tCho), total creatine (tCr), glutamine (Gln), glutamate (Glu), and myo-Inositol (mI) were assessed in patients and controls. RESULTS Decreased NAA, tCho, and tCr were found in the right frontal and right parietal lobe in MDD compared to CTRL, and to a lesser extent in the left frontal lobe. Furthermore, in MDD increased glutamine was observed in the right frontal lobe and bitemporal lobes, and increased glutamate in the cerebellum. CONCLUSION Altered global neurometabolism examined using 1H-WBS imaging in MDD may be interpreted as signs of neuronal dysfunction, altered energy metabolism, and oligodendrocyte dysfunction. In particular, the parallel decrease in NAA, tCr and tCho in the same brain regions may be indicative of neuronal dysfunction that may be counterbalanced by an increase of the neuroprotective metabolite glutamine. Future prospective investigations are warranted to study the functional importance of these findings. BACKGROUND Schizophrenia (SCZ) is a highly heritable disorder associated with brain connectivity changes. Although the mechanism of disease expression and vulnerability of SCZ have been reported by previous studies, the mechanism of resilience to SCZ based on the brain structural connectivity is poorly understood. The goal of the present study was to identify the structural brain connectivity related with the resilience to SCZ, which is defined here as the capacity to avoid or delay the onset of SCZ in unaffected siblings of SCZ probands. METHOD We collected diffusion tensor imaging (DTI) data of 49 medication-naive, first-episode SCZ (FE-SCZ) patients, 56 unaffected siblings of SCZ probands (SIB-SCZ), and 90 healthy controls. Then we used graph theoretical approach to calculate the topological properties of the brain structural network, including global, subnetwork, and regional parameters. Finally, we compared the parameters between the three groups, and identified the brain structural network related to thconnectivity associating with resilience and disease expression may contribute to the onset of SCZ. The role of histone modifications in the pathogenesis of schizophrenia has been proposed previously. H3F3B is a member of the histone 3. NSD2 is a histone methyltransferase that mediates dimethylation of Histone 3 lysine 36 (H3K36me2). The aim of the current study was to explore the associations between SNPs within H3F3B gene (rs60700976, rs3214028) and NSD2 gene (rs13148597, rs75820801) and the susceptibility to schizophrenia in a Chinese population. A total of 810 patients and 490 healthy controls were recruited and genetic association analyses were performed. The H3F3B gene polymorphisms rs3214028 and rs60700976 were significantly associated with schizophrenia. Rs60700976 was also associated with psychotic symptoms in schizophrenia patients. Furthermore, we found the interaction between NSD2 gene and H3F3B gene was related to the susceptibility to schizophrenia. The corresponding best three-locus model was H3F3B (rs60700976) - NSD2 (rs75820801, rs13148597), and the high-risk genotype combination was rs13148597(CC)- rs60700976(GG)-rs75820801(TT) (OR = 1.