https://www.selleckchem.com/products/rin1.html 3%). Betahistine at doses over 0.1 mg/mL significantly suppressed the cell migration rate in all of the cell lines. In contrast, exposure to a low dose of betahistine (0.025 mg/mL) induced migration rates of HUVEC and Ishikawa cells by 81% and 48%, respectively. Betahistine may alter the processes of cellular proliferation, apoptosis, and cellular migration in a cell line- and dose-dependent manner. In this sense, proliferative and metastatic properties of certain cancer cells can potentially be altered in response to betahistine treatment. Betahistine may alter the processes of cellular proliferation, apoptosis, and cellular migration in a cell line- and dose-dependent manner. In this sense, proliferative and metastatic properties of certain cancer cells can potentially be altered in response to betahistine treatment.The development of perennial grain crops is driven by the vision of simultaneous food production and enhanced ecosystem services. Typically, perennial crops like intermediate wheatgrass (IWG)[Thinopyrum intermedium (Host) Barkworth & D.R Dewey] have low seed yield and other detrimental traits. Next-generation sequencing has made genomic selection (GS) a tractable and viable breeding method. To investigate how an IWG breeding program may use GS, we evaluated 3,658 genets over 2 yr for 46 traits to build a training population. Six statistical models were used to evaluate the non-replicated data, and a model using autoregressive order 1 (AR1) spatial correction for rows and columns combined with the genomic relationship matrix provided the highest estimates of heritability. Genomic selection models were built from 18,357 single nucleotide polymorphism markers via genotyping-by-sequencing, and a 20-fold cross-validation showed high predictive ability for all traits (r > .80). Predictive abilities improved with increased training population size and marker numbers, even with larger amounts of missing data per m