The extensive study of a depth profile from Puisaye showed a low vertical diffusion of the released metal in the heap substratum. We also investigated the fractionation of metals in soils and their environmental availability. The results showed that Mn is generally present in reducible forms or associated with the residual fraction but is less adsorbed to the organic matter (OM) or present in easily exchangeable forms. https://www.selleckchem.com/products/gpr84-antagonist-8.html In contrast, the low extractability of Fe indicates that it is mostly bound to the residual (i.e., mineral) fraction. Based on the easily exchangeable metal concentrations measured in soils, low to medium ecological risks were identified at the sites investigated.In the Upper Indus Basin (UIB), precipitation associated with synoptic-scale circulations impinges on the complex and steep orography of the western Himalaya and Karakoram. Heavy rainfall often falls over the foothills, frequently triggering landslides there. This study explores the role of these synoptic-scale circulations - extratropical western disturbances (WDs) and tropical depressions (TDs) - in producing the conducive conditions necessary to trigger landslides, using data from the NASA Global Landslide Catalog and WD and TD track databases. During the winter (October to April), UIB landslides peak in February and occur at a rate of 0.05 day-1, 61% of which are associated with the passage of a WD. They are most common when a WD is located within a few hundred kilometres of 30°N, and significantly rarer if the WD is north of 40°N. WDs provide moist southwesterly flow from the Arabian Sea and Mediterranean Sea to the UIB, resulting in large-scale precipitation, but landslide probability is not related to WD intensity. Non-WD winter landslides are associated with small-scale orographic precipitation that we hypothesise is due to cloudbursts. During the summer (May to September), UIB landslides peak in August and occur at a rate of 0.11 day-1, 60% of which are associated with TD activity. Many of these TDs are found over central India, slightly south of the climatological monsoon trough, where they provide strong monsoonal southeasterlies to the UIB flowing along the Himalayas. Increased landslide frequency is also associated with TD activity over the southern Bay of Bengal (BoB), and it is hypothesised that this is related to monsoon break conditions. Landslide frequency is significantly correlated with TD intensity. Non-TD landslides are associated with a northwestward extension of the monsoon trough, providing southeasterly barrier flow to the UIB. Implications for forecasting and climate change are discussed.Biodegradable film mulching (BM) is considered as the best alternative to plastic film mulching (PM) since it can prevent pollution caused due to plastic residues. However, the differences in soil microbial biomass and enzymatic activities between BM and PM, especially for different soil water and nitrogen contents remain ambiguous. In this study, the effects of BM, PM, and no film mulching (NM) on soil microbial biomass C (Cmic), N (Nmic), soil enzymes, and soil C/N ratio in a cornfield were evaluated using experimental data from 2018 and 2019. Additionally, different irrigation depths (30 mm, 22.5 mm, and 15 mm) and N-fertilizer application levels (280 kg ha-1 and 210 kg ha-1) were used in BM. The experimental results demonstrated no apparent differences between the Cmic, Nmic, and soil enzymes between BM and PM in the early stage (elongation stage), but these values under BM were significantly lower than that of PM in the middle stage of crop growth (tasseling and filling stages). Soil sucrase, catalase, and urease under PM were increased by 20.2%, 0.6%, and 12.0%, respectively, compared to BM. The analysis of Cmic, Nmic, soil enzymes, and crop yield under different irrigation and N-fertilizer application levels demonstrated the preponderance of BM22.5, 280, showing the highest yield of 14,110.1 kg ha-1 and NUE of 61.7.Certain metal ions can contribute to the functional microorganisms becoming dominant by stimulating their metabolism and activity. Therefore, Pseudomonas stutzeri T13 was used to investigate the impacts of biological stimulation with certain metal ions on aerobic denitrifying bacteria. Results showed that with the addition of 0.036 mmol/L Fe3+ ions, the nitrogen-assimilation capacity of P. stutzeri T13 significantly increased by 43.99% when utilizing ammonium as the sole nitrogen source. Kinetic models were applied to analyze the role of Fe3+ ions in the growth, and results indicated that increasing Fe3+ ion concentrations decreased the decay rate. The maximum nitrate reduction rate increased from 9.55 mg-N L-1 h-1 to 19.65 mg-N L-1 h-1 with Fe3+ ion concentrations increasing from 0.004 to 0.036 mmol/L, which was due to the increased level of napA gene transcription and activity of nitrate reductase. This study provides a theoretical foundation for further understanding of the mechanism of Fe3+ ion stimulation of aerobic denitrification, benefiting the practicable application of aerobic denitrifiers.This study developed a framework termed as "mixNanohealthrisk" hereafter, for the first time as per literature review, to provide exposure limit or reference dose for co-occurring nanoparticles (NPs) in water for different regions of the world. The effect of interaction of NPs on (i) NP occurrence in environment and (ii) toxic effects were incorporated for estimating NP exposure dose and associated risks (in terms of risk quotient (RQ) and hazard index (HI). Reference dose (RfD) values for SiO2, CeO2, TiO2, Al2O3, Fe2O3, CNT, C60, ZnO and CuO NPs were calculated for the first time in this study based on toxicity studies. RfD values for top three risk-posing nanoparticles when co-occurring together were found to be 0.1 mg/kg/d (CuO), 0.12 mg/kg/d (ZnO) and 0.19 mg/kg/d (TiO2). Calculated maximum allowable concentration values for these nanoparticles were found to be 70.8, 84.4 and 136 mg/L for CuO, ZnO and TiO2 NPs. Exposures to nanoparticles aggregate (ZnO NP + CuO NP) in mixture suspension was found to have allowable ZnO and CuO concentration values of 24.7 mg/L and 175.2 mg/L respectively when present as aggregate. Top three regions identified with highest risk quotient were found to be USA followed by Switzerland and whole of Europe. During use of NP-interaction data for estimating risks, Ag, TiO2 and CuO NPs were found to have lowest maximum allowable concentration values. The identified top three risk-posing NPs can be used for conducting toxicity studies for mixture of NPs and long-term monitoring so that it can be used for setting up guideline concentration values for NPs in mixture for water environment.