In this work, the temperature-dependent solvation behavior of a number of important light gases, such as carbon dioxide, xenon, krypton, argon, oxygen, methane, nitrogen, neon, and hydrogen, in two important imidazolium-based ionic liquids (ILs) of the type 1-n-alkyl-3-methylimidazolium hexafluorophosphate ([C n mim][PF6]) and 1-n-alkyl-3-methylimidazolium tetrafluoroborate ([C n mimBF4]) with varying chain lengths (n = 2, 4, 6, and 8) are investigated using molecular dynamics simulations for a temperature range between 300 and 500 K at a pressure of 1 bar. The aim of this work is first to propose a reliable estimate for the temperature-dependent solubility behavior of (very) light gases, e.g., hydrogen and nitrogen, where reported experimental data are inconsistent. Moreover, we would like to rationalize the common features of the temperature-dependent solvation of light gases for various imidazolium-based ionic liquids. For the selected solute gases in our simulated imidazolium-based ILs, we applied the pota certain temperature.In this study, we describe the development of heterobivalent [DUPA-6-Ahx-([111In]In-DO3A)-8-Aoc-BBN ANT] and [DUPA-6-Ahx-([177Lu]Lu-DO3A)-8-Aoc-BBN ANT] radiotracers that display very high selectivity/specificity for gastrin-releasing peptide receptor (GRPR)-/prostate-specific membrane antigen (PSMA)-expressing cells. These studies include metallation, purification, characterization, and in vitro and in vivo evaluation of the new small-molecule-/peptide-based radiopharmaceuticals having utility for imaging and potentially therapy. Competitive displacement binding assays using PC-3 cells and LNCaP cell membranes showed high binding affinity for the GRPR or the PSMA. Biodistribution studies showed favorable excretion pharmacokinetics with high tumor uptake in PC-3 or PC-3 prostatic inhibin peptide (PIP) tumor-bearing mice. For example, tumor accumulation at the 1 h time point ranged from (4.74 ± 0.90) to (7.51 ± 2.61)%ID/g. Micro-single-photon emission computed tomography (microSPECT) molecular imaging investigations showed very high uptake in tumors with minimal accumulation of tracers in the surrounding collateral tissues in xenografted mice at 4 h postintravenous injection. In conclusion, [DUPA-6-Ahx-([111In]In-DO3A)-8-Aoc-BBN ANT] and [DUPA-6-Ahx-([177Lu]Lu-DO3A)-8-Aoc-BBN ANT] tracers displayed favorable pharmacokinetic and excretion profiles with high uptake and retention in tumors.Separating the immunosuppressive activity of FK506 (1) from its neurotrophic activity is required to develop FK506 analogues as drugs for the treatment of neuronal diseases. Two new FK506 analogues, 9-deoxo-36,37-dihydro-prolylFK506 (2) and 9-deoxo-31-O-demethyl-36,37-dihydro-prolylFK506 (3) containing a proline moiety instead of the pipecolate ring at C-1 and modifications at the C-9/C-31 and C-36-C-37 positions, respectively, were biosynthesized, and their biological activities were evaluated. The proline substitution in 9-deoxo-36,37-dihydroFK506 and 9-deoxo-31-O-demethyl-36,37-dihydroFK506 reduced immunosuppressive activity by more than 120-fold, as previously observed. Compared with FK506 (1), 2 and 3 exhibited ∼1.2 × 105- and 2.2 × 105-fold reductions in immunosuppressive activity, respectively, whereas they retained almost identical neurite outgrowth activity. Furthermore, these compounds significantly increased the strength of synaptic transmission, confirming that replacement of the pipecolate ring with a proline is critical to reduce the strong immunosuppressive activity of FK506 (1) while enhancing its neurotrophic activity.Pantetheine is ubiquitous in nature in various forms of pantetheine-containing ligands (PCLs), including coenzyme A and phosphopantetheine. https://www.selleckchem.com/products/bms-1166.html Lack of scalable force field libraries for PCLs has hampered the computational studies of biological macromolecules containing PCLs. We describe here the development of the first generation Pantetheine Force Field (PFF) library that is compatible with Amber force fields; parameterized using Gasteiger, AM1-BCC, or RESP charging methods combined with gaff2 and ff14SB parameter sets. In addition, a "plug-and-play" strategy was employed to enable the systematic charging of computationally expensive molecules sharing common substructural motifs. The validation studies performed on the PFF library showed promising performance where molecular dynamics (MD) simulations results were compared with experimental data of three representative systems. The PFF library represents the first force field library capable of modeling systems containing PCLs in silico and will aid in various applications including protein engineering and drug discovery.Carbocations are short-lived reactive intermediates in many organic and biological reactions that are difficult to observe. This field sprung to life with the discovery by Olah that a superacidic solution allowed the successful capture and nuclear magnetic resonance characterization of transient carbocations. We report here that water microdroplets can directly capture the fleeting carbocation from a reaction aliquot followed by its desorption to the gas phase for mass spectrometric detection. This was accomplished by employing desorption electrospray ionization mass spectrometry to detect a variety of short-lived carbocations (average lifetime ranges from nanoseconds to picoseconds) obtained from different reactions (e.g., elimination, substitution, and oxidation). Solvent-dependent studies revealed that aqueous microdroplets outperform organic microdroplets in the capture of carbocations. We provide a mechanistic insight demonstrating the survival of the reactive carbocation in a positively charged aqueous microdroplet and its subsequent ejection to the gas phase for mass spectrometric analysis.High-performance thin film nanocomposite (TFN) hollow fiber (HF) membranes, with MIL-101(Cr) MOF nanoparticles (52 ± 13 nm) embedded, have been synthesized with the polyamide layer formed either on the outer or inner surface of a polysulfone HF (250 and 380 μm ID and OD, respectively). The TFN_out membrane was developed using the conventional interfacial polymerization method, typically applied to obtain TFN flat membranes (MOF particles added to the thin layer by deposition). This membrane gave a water permeance value of 1.0 ± 0.7 L·m-2·h-1·bar-1 and a rejection of 90.9 ± 1.2% of acridine orange (AO, 265 Da). In contrast, the TFN_in membrane was synthesized by microfluidic means and gave a significantly higher water permeance of 2.8 ± 0.2 L·m-2·h-1·bar-1 and a slightly lower rejection of 87.4 ± 2.5% of the same solute. This remarkable increase of flux obtained with small solute AO suggests that the HF membranes developed in this work would exhibit good performance with other typical solutes with higher molecular weight than AO.