https://www.selleckchem.com/products/CUDC-101.html Blood and serum N-glycans can be used as markers for cancer diagnosis, as alterations in protein glycosylation are associated with cancer pathogenesis and progression. We aimed to develop a platform for breast cancer (BrC) diagnosis based on serum N-glycan profiles using MALDI-TOF mass spectroscopy. Serum N-glycans from BrC patients and healthy volunteers were evaluated using NosQuest's software "NosIDsys." BrC-associated "NosID" N-glycan biomarkers were selected based on abundance and NosIDsys analysis, and their diagnostic potential was determined using NosIDsys and receiver operating characteristic curves. Results showed an efficient pattern recognition of invasive ductal carcinoma patients, with very high diagnostic performance [area under the curve (AUC) 0.93 and 95% confidence interval (CI) 0.917-0.947]. We achieved effective stage-specific differentiation of BrC patients from healthy controls with 82.3% specificity, 84.1% sensitivity, and 82.8% accuracy for stage 1 BrC and recognized hormone receptor-2 and lymph node invasion subtypes based on N-glycan profiles. Our novel technique supplements conventional diagnostic strategies for BrC detection and can be developed as an independent platform for BrC screening.Tuberculosis (TB) is one of the top 10 causes of death globally and the leading cause of death by a single infectious pathogen. The World Health Organization (WHO) has declared the End TB Strategy, which targets a 90% reduction in the incidence rate by the year 2035 compared to the level in the year 2015. In this work, a TB model is considered to understand the transmission dynamics in the top three TB burden countries-India, China, and Indonesia. Country-specific epidemiological parameters were identified using data reported by the WHO. If India and Indonesia succeed in enhancing their treatment protocols and increase treatment and treatment success rate to that of China, the incidence rate could be re