https://www.selleckchem.com/products/brr2-inhibitor-c9.html The binding constants (Ka) for both peptides to EFD were calculated to be in the range of 105 M-1. The formation of the binary complex EFD/REFBD and ternary complex EFD/REFBD/PhosR was demonstrated by fluorescence resonance energy transfer (FRET). However, EFD binding to PhosR appears to be not biologically important while the conformational change on its C-terminal half domain resembles a major factor in EFD-DH domain-domain interactions. Doxorubicin (DOX) is one of the most effective antineoplastic drugs. However, its clinical application has been greatly limited due to the development of cardiotoxicity with DOX utilization. A number of theories have been postulated for DOX-induced cardiotoxicity with a pivotal contribution from unchecked (excess) mitophagy and mitochondrial fission. Liensinine (LIEN), a newly identified mitophagy inhibitor, strengthens the antineoplastic efficacy of DOX although its action on hearts remains elusive. This study was designed to examine the effect of LIEN on DOX-induced cardiotoxicity and the underlying mechanisms involved with a focus on mitochondrial dynamics. Our data revealed that LIEN alleviated DOX-induced cardiac dysfunction and apoptosis through inhibition of dynamin-related protein 1 (Drp1)-mediated excess (unchecked) mitochondrial fission. LIEN treatment decreased Drp1 phosphorylation at Ser616 site, inhibited mitochondrial fragmentation, mitophagy (assessed by TOM20 and TIM23), oxidative stress, cytochrome C leakage, cardiomyocyte apoptosis, as well as improved mitochondrial function and cardiomyocyte contractile function in DOX-induced cardiac injury. In DOX-challenged neonatal mouse ventricular myocytes (NMVMs), LIEN-suppressed Drp1 phosphorylation, mitochondrial fragmentation, and apoptosis were blunted by Rab7 overexpression, the effect of which was reversed by the ERK inhibitor U0126. Moreover, activation of ERK or Drp1 abolished the protective effects of LI