Harnessing the benefits of plant-microbe interactions towards better nutrient mobilization and plant growth is an important challenge for agriculturists globally. In our investigation, the focus was towards analyzing the soil-plant-environment interactions of cyanobacteria-based formulations (Anabaena-Nostoc consortium, BF1-4 and Anabaena-Trichoderma biofilm, An-Tr) as inoculants for ten maize genotypes (V1-V10). Field experimentation using seeds treated with the formulations illustrated a significant increase of 1.3- to 3.8-fold in C-N mobilizing enzyme activities in plants, along with more than five- to six-fold higher values of nitrogen fixation in rhizosphere soil samples. An increase of 22-30% in soil available nitrogen was also observed at flag leaf stage, and 13-16% higher values were also recorded in terms of cob yield of V6 with An-Tr biofilm inoculation. Savings of 30 kg N ha-1 season-1 was indicative of the reduced environmental pollution, due to the use of microbial options. The use of cyanobacterial formulations also enhanced the economic, environmental and energy use efficiency. This was reflected as 37-41% reduced costs lowered GHG emission by 58-68 CO2 equivalents and input energy requirement by 3651-4296 MJ, over the uninoculated control, on hectare basis. This investigation highlights the superior performance of these formulations, not only in terms of efficient C-N mobilization in maize, but also making maize cultivation a more profitable enterprise. Such interactions can be explored as resource-conserving options, for future evaluation across ecologies and locations, particularly in the global climate change scenario.A white-coloured, aerobic, and rod-shaped bacterium, designated strain ID0723T was isolated from evaporator core of automobile air conditioning system. The strain was Gram-stain-negative, catalase positive, oxidase negative, and grew at pH 5.5-9.5, at temperature 18-37 °C, and at 0-2.0% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence data revealed that the strain ID0723T was affiliated to the genus Schlegelella, with the closest phylogenetic member being Schlegelella brevitalea DSM 7029 T (98.1% sequence similarity). The chemotaxonomic features of strain ID0723T were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine as the main polar lipids; Q-8 as an only ubiquinone; and summed feature 3 (C161ω7c and/or C16 1ω6c), C160, and summed feature 8 (C181ω7c/or C181ω6c) as the major fatty acids. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization values between strain ID0723T and S. brevitalea DSM 7029 T were 74.8% and 20.0%, respectively, which were below the cut-off values of 95% and 70%, respectively. The DNA G + C content was 69.9 mol%. The polyphasic taxonomic data clearly indicated that strain ID0723T represents a novel species in the genus Schlegelella for which the name Schlegelella koreensis sp. nov. is proposed, with the type strain ID0723T (= KCTC 72731 T = NBRC 114611 T).Phytoremediation is a green, simple, eco-friendly, sustainable, and cost-effective remediation technology to remove and degrade contaminants from soil. In this study, a germination experiment and a pot experiment were performed in greenhouse to evaluate cadmium toxicity and phytoremediation capacity. The results showed that there was the highest membership function value of cadmium (MFVC) in KFJT-3 than that of KFJT-CK and KFJT-1, the value being 0.473, 0.456 and 0.413, respectively. Furthermore, the highest biomass was discovered in KFJT-3 compared to the other genotypes under 50 mg/kg cadmium stress. Physiological analysis showed that proline content significantly increased in KFJT-3, the value being 31.88%. https://www.selleckchem.com/autophagy.html In addition, Bioaccumulation factor (BAF) and Translocation factor (TF) value were 3.80 and 1.02 for KFJT-3, respectively. In conclusion, BAF and TF values showed that the cadmium tolerance of KFJT-1 and KFJT-3 could be higher than that of KFJT-CK, which could be the genotype for phytoremediation of cadmium contaminated soil.Mixotrophy combines autotrophy and phagotrophy in the same cell. However, it is not known to what extent the phagotrophy influences metabolism, cell composition, and growth. In this work, we assess, on the one hand (first test), the role of phagotrophy on the elemental and biochemical composition, cell metabolism, and enzymes related to C, N, and S metabolism of Isochrysis galbana Parke, 1949. On the other hand, we study how a predicted increase of phagotrophy under environmental conditions of low nutrients (second test) and low light (third test) can affect its metabolism and growth. Our results for the first test revealed that bacterivory increased the phosphorous and iron content per cell, accelerating cell division and improving the cell fitness; in addition, the stimulation of some C and N enzymatic routes help to maintain, to some degree, compositional homeostasis. Under nutrient or light scarcity, I. galbana grew more slowly despite greater bacterial consumption, and the activities of key enzymes involved in C, N, and S metabolism changed according to a predominantly phototrophic strategy of nutrition in this alga. Contrary to recent studies, the stimulation of phagotrophy under low nutrient and low irradiance did not imply greater and more efficient C flux.Frailty reflects an accelerated health decline. Frailty is a consequence of fracture and contributes to fracture. Greater frailty was associated with higher fracture risk. Frail women were at immediate risk (within 24 months) of a hip or major fracture. Fracture prevention could be improved by considering frailty status. Frailty encompasses the functional decline in multiple systems, particularly the musculoskeletal system. Frailty can be a consequence of and contribute to fracture, leading to a cycle of further fractures and greater frailty. This study investigates this association, specifically time frames for risk, associated fracture types, and how grade of frailty affects risk. The study is performed in the OPRA cohort of 1044, 75-year-old women. A frailty index was created at baseline and 5 and 10 years. Women were categorized as frail or nonfrail and in quartiles (Q1 least frail; Q4 most frail). Fracture risk was assessed over short (1 and 2 years) and long terms (5 and 10 years). Fracture risk was defined for any fracture, major osteoporotic fractures (MOFs), and hip and vertebral fracture, using models including bone mineral density (BMD) and death as a competing risk.