In the current study, Sr/Fe co-substituted hydroxyapatite (HAp) bioceramics were prepared by the sonication-assisted aqueous chemical precipitation method followed by sintering at 1100 °C for bone tissue regeneration applications. The sintered bioceramics were analyzed for various structural and chemical properties through X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy, which confirmed the phase purity of HAp and Sr/Fe co-substitution into its lattice. The Vickers hardness measurement, high blood compatibility (less than 5% hemolysis), and ability to support the adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells suggest the suitability of Sr/FeHAp bioceramics for bone implant applications. The physicochemical analysis revealed that the developed Sr/FeHAp bioceramics exhibited a polyphasic nature (HAp and βTCP) with almost identical structural morphology having a particle size less than 0.8 μm. The dielectric constant (ε') and dielectric loss (ε″) were potentially affected by the incorporated foreign ions together with the polyphasic nature of the material. The Sr/Fe co-substituted samples demonstrated extended drug (5-fluorouracil and amoxicillin) release profiles at the pH of physiological medium. The multifunctional properties of the developed HAp bioceramics enabled them to be an auspicious candidate for potential biomedical applications, including targeted drug-delivery applications, heating mediator in hyperthermia, and bone tissue repair implants.The development of simple, cost-effective, and advanced multifunctional technology is the need of the hour to combat cancer as well as bacterial infections. There have been reports of silver nanoparticles (AgNPs), silver salts, and Prussian blue (PB) being used for medicinal purposes which are clinically approved. In this context, in the present communication, we incorporated PB and silver salts (silver nitrate) to develop silver PB analogue nanoparticles (SPBANPs), a new nanomedicine formulation as a safer and effective mode of treatment strategy (2-in-1) for both cancer and bacterial infections. Considering all fundamental issues of nanomedicine, along with understanding of the biological impact of PB, we designed a simple, fast, efficient, cheap, and eco-friendly method for the synthesis of [poly(N-vinyl-2-pyrrolidone)]-stabilized silver hexacyanoferrate nanoparticles (silver PB analogue Ag3[Fe(CN)6] abbreviated as SPBANPs). Various analytical tools were used to analyze and characterize the nanomaterials (ate that this biocompatible nanoformulation (SPBANPs) without an anticancer drug or antibiotic could be explored to develop as a multifunctional therapeutic agent (2-in-1) for the treatment of cancer and bacterial infections in the near future.Herein, three categories of collagens with different hierarchical architectures, including collagen molecules (Col), collagen microfibrils (F-col), and collagen fiber bundles (Ag-col), were systematically biofabricated based on the biosynthesis pathway of natural collagen. Their macroscopic properties, that is, physicochemical and biological properties, and hierarchical structures were evaluated synthetically. The results showed that Col had a rigid rod-like fibrous triple helix structure, whereas F-col and Ag-col had the typical D-periodic cross-striated patterns with lengths of about 54 and 60 nm in the longitudinal direction, respectively. We further found that collagens with higher hierarchical structures had more superior thermal stability, mechanical properties, and biodegradability. Among all three collagens, Ag-col was the best it had the highest bioactivity and hemostatic properties and could better promote cell adhesion, growth, and proliferation and better improve the secretion of growth factors. Overall, we have a reason to believe that collagens with a higher hierarchical structure can serve as a better alternative source of collagenous materials for further applications in biological industries.This article reports the antimicrobial activity of two segmented amphiphilic polyurethanes, PU-1 and PU-2, containing a primary or secondary amine group, respectively. In acidic water, intrachain H-bonding among the urethanes followed by hierarchical assembly resulted in the formation of capsules (Dh = 120 ± 20 and 100 ± 17 nm for PU-1 and PU-2, respectively) with a highly positive surface charge. They showed selective interactions with bacterial cell mimicking liposomes over mammalian cell mimicking liposomes with favorable enthalpy and entropy contributions, which was attributed to the electrostatic interaction and hydrophobic effect. Antimicrobial studies with Escherichia coli revealed very low minimum inhibitory concentration (MIC) values of 7.8 and 15.6 μg/mL for PU-1 and PU-2, respectively, indicating their ability to efficiently kill Gram-negative bacteria. Killing of Gram-positive Staphylococcus aureus was noticed only at C = 500 μg/mL, indicating unprecedented selectivity for E. coli, which was further confirmed by scanning electron microscopy (SEM) studies. Hemolysis assay revealed HC50 values of 453 and 847 μg/mL for PU-1 and PU-2, respectively, which were >50 times higher than their respective MIC values, thus making them attractive antimicrobial materials. Ortho-nitrophenyl-β-galactoside (ONPG) assay and live-dead fluorescence assay confirmed that for both the polymers, a membrane disruption pathway was operative for wrapping of the bacterial membrane, similar to what was proposed for antimicrobial peptides. SEM images of polymer-treated E. coli bacteria helped in visualization of the pore formation and the disrupted membrane structure.Bimetallic nanoparticles act as a multifunctional platform because their properties are dependent on the composition, size, and shape, so their synthetic approaches and technological applications have fascinated many researchers. However, the rigorous reaction conditions and the hazardous chemicals are required during the chemical synthesizing processes. In this study, we develop a biosynthesis method of the bimetallic Au-Ag nanoparticles at room temperature without stabilizers or surfactants. https://www.selleckchem.com/peptide/pki-14-22-amide-myristoylated.html In the solution containing Escherichia coli and Au ions, Au nanoparticles are first obtained upon increasing the pH. After Ag ions join, the core-shell Au-Ag nanoparticles are orderly produced. Transmission electron microscopy (TEM), UV-vis, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) are performed to confirm the structure and composition of biosynthetic Au-Ag nanoparticles. Furthermore, we have demonstrated that our bimetallic Au-Ag nanoparticles have greater application prospects in the ultrafast colorimetric detection of H2O2, photothermal therapy, and antibiotic therapy in comparison with single Au or Ag nanoparticles.