Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.The temperature-size Rule (TSR) states that there is a negative relationship between ambient temperature and body size. https://www.selleckchem.com/products/ly333531.html This rule has been independently evaluated for different phases of the life cycle in multicellular eukaryotes, but mostly for the average population in unicellular organisms. We acclimated two model marine cyanobacterial strains (Prochlorococcus marinus MIT9301 and Synechococcus sp. RS9907) to a gradient of temperatures and measured the changes in population age-structure and cell size along their division cycle. Both strains displayed temperature-dependent diel changes in cell size, and as a result, the relationship between temperature and average cell size varied along the day. We computed the mean cell size of new-born cells in order to test the prediction of the TSR on a single-growth stage. Our work reconciles previous inconsistent results when testing the TSR on unicellular organisms, and shows that when a single-growth stage is considered the predicted negative response to temperature is revealed.Cryptococcosis is a fungal infection caused mainly by the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii. The infection initiates with the inhalation of propagules that are then deposited in the lungs. If not properly treated, cryptococci cells can disseminate and reach the central nervous system. The current recommended treatment for cryptococcosis employs a three-stage regimen, with the administration of amphotericin B, flucytosine and fluconazole. Although effective, these drugs are often unavailable worldwide, can lead to resistance development, and may display toxic effects on the patients. Thus, new drugs for cryptococcosis treatment are needed. Recently, an iridoid named plumieridine was found in Allamanda polyantha seed extract; it exhibited antifungal activity against C. neoformans with a MIC of 250 μg/mL. To address the mode of action of plumieridine, several in silico and in vitro experiments were performed. Through a ligand-based a virtual screening approach, chitinases were identified as potential targets. Confirmatory in vitro assays showed that C. neoformans cell-free supernatant incubated with plumieridine displayed reduced chitinase activity, while chitinolytic activity was not inhibited in the insoluble cell fraction. Additionally, confocal microscopy revealed changes in the distribution of chitooligomers in the cryptococcal cell wall, from a polarized to a diffuse cell pattern state. Remarkably, further assays have shown that plumieridine can also inhibit the chitinolytic activity from the supernatant and cell-free extracts of bacteria, insect and mouse-derived macrophage cells (J774.A1). Together, our results suggest that plumieridine can be a broad-spectrum chitinase inhibitor.The red pigment prodiginines are identified as bacterial secondary metabolites and display a wide range of bioactive properties. Here, a novel rose-red pigmented bacterium, designated strain S2-4-1HT, was isolated from coastal sediment of cordgrass Spartina alterniflora. Interestingly, it simultaneously produced heptylprodigiosin (C22H29N3O) and cycloheptylprodigiosin (C22H27N3O) as major red pigments, of which their chemical structures were established by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). Bioactive assays revealed that both heptylprodigiosin and cycloheptylprodigiosin had antibacterial and antifungal activities, and notably, cycloheptylprodigiosin showed stronger bioactivity than heptylprodigiosin. The complete genome of strain S2-4-1HT was determined to be 6,687,090 bp in length with a G + C content of 40.13 mol%, including a circular chromosome with a size of 6,361,125 bp and three plasmids with a size of 141,078, 102,423, and 82,464 bp, respectively. The biosynthetic gene cluster of two red pigments was predicted on a ∼41-kb gene fragment organized on the chromosome and displayed highly conserved features compared to several gammaproteobacterial species encoding the homologous genes. Finally, based on phenotypic, genotypic, and chemotaxonomic characteristics, strain S2-4-1HT represented a novel genus-level species named Spartinivicinus ruber gen. nov., sp. nov. (type strain S2-4-1HT = MCCC 1K03745T = KCTC 72148T). Our study provided a novel bacterial source and novel prodigiosin analogs as promising pharmaceuticals in biotechnological application.Weaning is stressful for piglets involving nutritional, physiological, and psychological challenges, leading to an increase in the secretion of cortisol, changes in gut microbiome and metabolites, whereas the underlying relationships remain unclear. To elucidate this, 14 Meishan female piglets were divided into the weaning group and the suckling group at the age of 21 days paired by litter and body weight. After 48 h of experiment, weaned piglets had lower body weight, but higher salivary cortisol level than that of their suckling litter mates (P less then 0.05). The composition of the colonic bacterial community and metabolites were different between the two groups, and the first predominant genus of the suckling and weaned piglets colonic microbiome were Bacteroides and Prevotellaceae-NK3B31 group respectively. The suckling piglets had higher proportions of phylum Bacteroidetes and Lentisphaerae, and genus Bacteroides and Lactobacillus in the colonic microbial community, but lower abundance of genus Prevo stress.Staphylococcus aureus, one of the most important human pathogens, is the causative agent of several infectious diseases including sepsis, pneumonia, osteomyelitis, endocarditis and soft tissue infections. This pathogenicity is due to a multitude of virulence factors including several cell wall-anchored proteins (CWA). CWA proteins have modular structures with distinct domains binding different ligands. The majority of S. aureus strains express two CWA fibronectin (Fn)-binding adhesins FnBPA and FnBPB (Fn-binding proteins A and B), which are encoded by closely related genes. The N-terminus of FnBPA and FnBPB comprises an A domain which binds ligands such as fibrinogen, elastin and plasminogen. The A domain of FnBPB also interacts with histones and this binding results in the neutralization of the antimicrobial activity of these molecules. The C-terminal moiety of these adhesins comprises a long, intrinsically disordered domain composed of 11/10 fibronectin-binding repeats. These repetitive motifs of FnBPs promote invasion of cells that are not usually phagocytic via a mechanism by which they interact with integrin α5β1 through a Fn mediated-bridge.