This paper presents a chaotic circuit based on a nonvolatile locally active memristor model, with non-volatility and local activity verified by the power-off plot and the DC V-I plot, respectively. It is shown that the memristor-based circuit has no equilibrium with appropriate parameter values and can exhibit three hidden coexisting heterogeneous attractors including point attractors, periodic attractors, and chaotic attractors. As is well known, for a hidden attractor, its attraction basin does not intersect with any small neighborhood of any unstable equilibrium. However, it is found that some attractors of this circuit can be excited from an unstable equilibrium in the locally active region of the memristor, meaning that its basin of attraction intersects with neighborhoods of an unstable equilibrium of the locally active memristor. Furthermore, with another set of parameter values, the circuit possesses three equilibria and can generate self-excited chaotic attractors. https://www.selleckchem.com/products/dn02.html Theoretical and simulated analyses both demonstrate that the local activity and an unstable equilibrium of the memristor are two reasons for generating hidden attractors by the circuit. This chaotic circuit is implemented in a digital signal processing circuit experiment to verify the theoretical analysis and numerical simulations.The path toward the synchronization of an ensemble of dynamical units goes through a series of transitions determined by the dynamics and the structure of the connections network. In some systems on the verge of complete synchronization, intermittent synchronization, a time-dependent state where full synchronization alternates with non-synchronized periods, has been observed. This phenomenon has been recently considered to have functional relevance in neuronal ensembles and other networked biological systems close to criticality. We characterize the intermittent state as a function of the network topology to show that the different structures can encourage or inhibit the appearance of early signs of intermittency. In particular, we study the local intermittency and show how the nodes incorporate to intermittency in hierarchical order, which can provide information about the node topological role even when the structure is unknown.The bouncing ball system is a simple mechanical collision system that has been extensively studied for several decades. In this study, we investigate the bouncing ball's dynamics both numerically and experimentally. We implement the system using a table tennis ball and paddle vibrated by a shaker. We focus on the relationship between the ball's maximum bounce height in the long time interval and the paddle's vibration frequency, observing several stepwise height changes for frequencies of 25-50 Hz, noting this significant characteristic in both our experiments and numerical simulations. We concentrate on this paddle frequency interval because the phenomenon is easy to handle in numerical simulations. Because the observed phenomenon has a simple order, it can be universal and appear in a large class of collision dynamics. Possibly, some researchers have investigated the bouncing ball system in which the nonsmooth maximum bounce height changes occur. However, they may have failed to notice the changes because the maximal height of the ball was not considered.Intermittency observed prior to thermoacoustic instability is characterized by the occurrence of bursts of high-amplitude periodic oscillations (active state) amidst epochs of low-amplitude aperiodic fluctuations (rest state). Several model-based studies conjectured that bursting arises due to the underlying turbulence in the system. However, such intermittent bursts occur even in laminar and low-turbulence combustors, which cannot be explained by models based on turbulence. We assert that bursting in such combustors may arise due to the existence of subsystems with varying timescales of oscillations, thus forming slow-fast systems. Experiments were performed on a horizontal Rijke tube and the effect of slow-fast oscillations was studied by externally introducing low-frequency sinusoidal modulations in the control parameter. The induced bursts display an abrupt transition between the rest and the active states. The growth and decay patterns of such bursts show asymmetry due to delayed bifurcation caused by slow oscillations of the control parameter about the Hopf bifurcation point. Further, we develop a phenomenological model for the interaction between different subsystems of a thermoacoustic system by either coupling the slow and fast subsystems or by introducing noise in the absence of slow oscillations of the control parameter. We show that interaction between subsystems with different timescales leads to regular amplitude modulated bursting, while the presence of noise induces irregular amplitude modulations in the bursts. Thus, we speculate that bursting in laminar and low-turbulence systems occurs predominantly due to the interdependence between slow and fast oscillations, while bursting in high-turbulence systems is predominantly influenced by the underlying turbulence.The dynamics of network social contagion processes such as opinion formation and epidemic spreading are often mediated by interactions between multiple nodes. Previous results have shown that these higher-order interactions can profoundly modify the dynamics of contagion processes, resulting in bistability, hysteresis, and explosive transitions. In this paper, we present and analyze a hyperdegree-based mean-field description of the dynamics of the susceptible-infected-susceptible model on hypergraphs, i.e., networks with higher-order interactions, and illustrate its applicability with the example of a hypergraph where contagion is mediated by both links (pairwise interactions) and triangles (three-way interactions). We consider various models for the organization of link and triangle structures and different mechanisms of higher-order contagion and healing. We find that explosive transitions can be suppressed by heterogeneity in the link degree distribution when links and triangles are chosen independently or when link and triangle connections are positively correlated when compared to the uncorrelated case.