https://www.selleckchem.com/products/ABT-888.html We study active learning (AL) based on gaussian processes (GPs) for efficiently enumerating all of the local minimum solutions of a black-box function. This problem is challenging because local solutions are characterized by their zero gradient and positive-definite Hessian properties, but those derivatives cannot be directly observed. We propose a new AL method in which the input points are sequentially selected such that the confidence intervals of the GP derivatives are effectively updated for enumerating local minimum solutions. We theoretically analyze the proposed method and demonstrate its usefulness through numerical experiments.Modeling spike train transformation among brain regions helps in designing a cognitive neural prosthesis that restores lost cognitive functions. Various methods analyze the nonlinear dynamic spike train transformation between two cortical areas with low computational eficiency. The application of a real-time neural prosthesis requires computational eficiency, performance stability, and better interpretation of the neural firing patterns that modulate target spike generation. We propose the binless kernel machine in the point-process framework to describe nonlinear dynamic spike train transformations. Our approach embeds the binless kernel to eficiently capture the feedforward dynamics of spike trains and maps the input spike timings into reproducing kernel Hilbert space (RKHS). An inhomogeneous Bernoulli process is designed to combine with a kernel logistic regression that operates on the binless kernel to generate an output spike train as a point process. Weights of the proposed model are estimated by maximiuron and the interaction of two input neurons. or ( ) alterations are common in men with metastatic castration-resistant prostate cancer (mCRPC) and may confer sensitivity to poly(ADP-ribose) polymerase inhibitors. We present results from patients with mCRPC associated with a alte