Am. Chem. Soc. 2020, 142, 8514), and argue for a consistent electronic structure across the entire series of complexes, rather than a change in the nature of the ligand field arrangement for Z = F.We report the results of the experimental and theoretical study of the magnetic anisotropy of single crystals of the Co-doped lithium nitride Li2(Li1-xCox)N with x = 0.005, 0.01, and 0.02. It was shown recently that doping of the Li3N crystalline matrix with 3d transition metal (TM) ions yields superior magnetic properties comparable with the strongly anisotropic single-molecule magnetism of rare-earth complexes. Our combined electron spin resonance (ESR) and THz spectroscopic investigations of Li2(Li1-xCox)N in a very broad frequency range up to 1.7 THz and in magnetic fields up to 16 T enable an accurate determination of the energies of the spin levels of the ground state multiplet Ŝ = 1 of the paramagnetic Co(I) ion. In particular, we find a very large zero field splitting (ZFS) of almost 1 THz (∼4 meV or 33 cm-1) between the ground-state singlet and the first excited doublet state. On the computational side, ab initio many-body quantum chemistry calculations reveal a ZFS gap consistent with the experimental value. Such a large ZFS energy yields a very strong single-ion magnetic anisotropy of easy-plane type resembling that of rare-earth ions. Its microscopic origin is the unusual linear coordination of the Co(I) ions in Li2(Li1-xCox)N with two nitrogen ligands. Our calculations also evidence a strong 3d-4s hybridization of the electronic shells resulting in significant electron spin density at the 59Co nuclei, which may be responsible for the experimentally observed extraordinary large hyperfine structure of the ESR signals. Altogether, our experimental spectroscopic and computational results enable comprehensive insights into the remarkable properties of the Li2[Li1-x(TM)x]N magnets on the microscopic level.Soluble oligomers formed by amyloidogenic intrinsically disordered proteins are some of the most cytotoxic species linked to neurodegeneration. Due to the transient and heterogeneous nature of such oligomeric intermediates, the underlying self-association events often remain elusive. NMR relaxation measurements sensitive to zero-frequency spectral densities (J(0)), such as the 15N - R2 rates, are ideally suited to map sites of self-association at atomic resolution without the need of exogenous labels. https://www.selleckchem.com/products/ly-411575.html Such experiments exploit the dynamic exchange between NMR visible monomers and slowly tumbling oligomers. However,15N - R2 rates are also sensitive to intrinsic monomer dynamics, and it is often difficult to discern these contributions from those arising from exchange with oligomers. Another challenge pertains to defining a hierarchy of self-association. Here, using the archetypical amyloidogenic protein alpha synuclein (αS), we show that the temperature-dependence of 15N - R2 effectively identifies self-association sites with reduced bias from internal dynamics. The key signature of the residues involved in self-association is a nonlinear temperature-dependence of 15N - R2 with a positive ΔR2/ΔT slope. These two hallmarks are systematically probed through a thermal R2 correlation matrix, from which the network of residues involved in self-association as well as the hierarchy of αS self-association sites is extracted through agglomerative clustering. We find that aggregation is initiated by residues within the NAC region that is solvent inaccessible in αS fibrils and eventually extends to the N-terminal segment harboring familial PD mutations. These hierarchical self-association maps help dissect the essential drivers of oligomerization and reveal how amyloid inhibitors affect oligomer formation.The remediation of organohalides from water is a challenging process in environment protection and water treatment. Herein, we report a molecular copper(I) complex with two triazole units, CuT2, in a heterogeneous aqueous system that is capable of dechlorinating dichloromethane (CH2Cl2) to afford hydrocarbons (methane, ethane, and ethylene). The catalytic performance is evaluated in water and presented high Faradaic efficiency (average 70% CH4) across a range of potentials (-1.1 to -1.6 V vs Ag/AgCl) and high activity (maximum -25.1 mA/cm2 at -1.6 V vs Ag/AgCl) with a turnover number of 2.0 × 107. The CuT2 catalyst also showed excellent stability for 14 h of constant exposure to CH2Cl2 and 10 h of CH2Cl2 exposure cycling. The control compound, a copper-free triazole unit (T1), was also investigated under the same condition and showed inferior catalytic activity, indicating the importance of the copper center. Plausible catalytic mechanisms are proposed for the formation of C1 and C2 products via radical intermediates. Computational studies provided additional insight into the reaction mechanism and the selectivity toward the CH4 formation. The findings in this study demonstrate that complex CuT2 is an efficient and stable catalyst for the dehalogenation of CH2Cl2 and could potentially be used for the exploration of the removal of halogenated species from aqueous systems.Secondary organic aerosol (SOA) plays a critical role in sustained haze pollution in megacities. Traditional observation of atmospheric aerosols usually analyzes the ambient organic aerosol (OA) but neglects the SOA formation potential (SOAFP) of precursors remaining in ambient air. Knowledge on SOAFP is still limited, especially in megacities suffering from frequent haze. In this study, the SOAFP of ambient air in urban Beijing was characterized at different pollution levels based on a two-year field observation using an oxidation flow reactor (OFR) system. Both OA and SOAFP increased as a function of ambient pollution level, in which increasing concentrations of precursor volatile organic compounds (VOCs) and decreasing atmospheric oxidation capacity were found to be the two main influencing factors. To address the role of the atmospheric oxidation capacity in SOAFP, a relative OA enhancement ratio (EROA = 1 + SOAFP/OA) and the elemental composition of the OA were investigated in this study. The results indicated that the atmospheric oxidation capacity was weakened and resulted in higher SOAFP on more polluted days.