The newly identified features correlated well with specific biomarkers traditionally used in clinical practice (r up to 0.73), and outperformed them in correlating with visual acuity ([Formula see text] compared to [Formula see text] for conventional markers), despite representing an enormous compression of OCT imaging data (67 million voxels to 20 features). In addition, our method also discovered hitherto unknown, clinically relevant biomarker candidates. The presented deep learning approach identified known as well as novel medical imaging biomarkers without any prior domain knowledge. Similar approaches may be worthwhile across other medical imaging fields.An amendment to this paper has been published and can be accessed via a link at the top of the paper.3D cell cultures are in-vitro models representing a significant improvement with respect to traditional monolayers. Their diffusion and applicability, however, are hampered by the complexity of 3D systems, that add new physical variables for experimental analyses. In order to account for these additional features and improve the study of 3D cultures, we here present SALSA (ScAffoLd SimulAtor), a general purpose computational tool that can simulate the behavior of a population of cells cultured in a 3D scaffold. https://www.selleckchem.com/products/nu7441.html This software allows for the complete customization of both the polymeric template structure and the cell population behavior and characteristics. In the following the technical description of SALSA will be presented, together with its validation and an example of how it could be used to optimize the experimental analysis of two breast cancer cell lines cultured in collagen scaffolds. This work contributes to the growing field of integrated in-silico/in-vitro analysis of biological systems, which have great potential for the study of complex cell population behaviours and could lead to improve and facilitate the effectiveness and diffusion of 3D cell culture models.Properties of gas clusters such as the size and number density when expanding into the vacuum after passing through a conical nozzle are analyzed for argon at an average density of 1020/cm3. Temporally and spatially resolved size and density distribution were measured from all-optical methods of Rayleigh scattering measurement and Nomarski interferometry using a CW laser. At the gas backing pressure of 80 bar, Ar clusters as large as 100 nm were obtained, which differs significantly from the size estimated by the conventional Hagena scaling law. The two independent methods of cluster characterization presented here would be useful to precisely determine the initial conditions in a variety of intense laser-cluster interaction driven applications such as neutron generation, thermonuclear fusion, efficient x-ray emission, and energetic ion acceleration.Concepts from dynamical systems theory, including multi-stability, oscillations, robustness and stochasticity, are critical for understanding gene regulation during cell fate decisions, inflammation and stem cell heterogeneity. However, the prevalence of the structures within gene networks that drive these dynamical behaviours, such as autoregulation or feedback by microRNAs, is unknown. We integrate transcription factor binding site (TFBS) and microRNA target data to generate a gene interaction network across 28 human tissues. This network was analysed for motifs capable of driving dynamical gene expression, including oscillations. Identified autoregulatory motifs involve 56% of transcription factors (TFs) studied. TFs that autoregulate have more interactions with microRNAs than non-autoregulatory genes and 89% of autoregulatory TFs were found in dual feedback motifs with a microRNA. Both autoregulatory and dual feedback motifs were enriched in the network. TFs that autoregulate were highly conserved between tissues. Dual feedback motifs with microRNAs were also conserved between tissues, but less so, and TFs regulate different combinations of microRNAs in a tissue-dependent manner. The study of these motifs highlights ever more genes that have complex regulatory dynamics. These data provide a resource for the identification of TFs which regulate the dynamical properties of human gene expression.The selection and breeding of Cd-safe cultivars (CSCs) has been used to minimize the influx of Cd into the human food chain. The pot-culture experiment combined with the field-culture experiment were conducted to screen out CSCs, i.e. the cultivars accumulating Cd at low enough level for safe consumption in their edible parts when grown in contaminated soils, were screened out and explored among the crop cultivars. We used 25 Chinese soybean cultivars in different Cd contaminated soils to assess the performance of this new method. Variations in uptake, enrichment, and translocation of Cd among these cultivars were studied to screen out soybean CSCs. The accumulation of Cd in the five soybean genotypes was lower than 0.20 mg kg-1 under 1.0 mg Cd kg-1 treatment, and the EF and TF were lower than 1.0. The field studies further identified that cultivar Shennong 10, Tiedou 36 and Liaodou 21 fit the criteria for CSCs, which were suitable to be planted in low-Cd (Cd concentration  less then  1.22 mg kg-1) contaminated soils. The results can provide scientific methods for screening low-Cd accumulation in soybeans and can provide a path for controlling, treating and remedying Cd-contaminated agricultural soils to make grains safe for human consumption.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Arthropod-borne viruses (arboviruses), including those vectored by mosquitoes, have recently been cited as potential emerging health threats to marine mammals. Despite the fully aquatic habits of cetaceans, immunologic exposure to arboviruses including West Nile virus and Eastern equine encephalitis virus has been detected in wild Atlantic bottlenose dolphins, and captive orcas have been killed by West Nile virus and St. Louis encephalitis virus. Currently, there is no evidence of direct interactions between mosquitoes and marine mammals in nature, and it remains unknown how wild cetaceans are exposed to mosquito-vectored pathogens. Here, we report the first evidence of direct interactions between an aquatic mammal, the West Indian manatee, a federally threatened species, and mosquitoes in nature. Observations of manatees in Everglades National Park, Florida, USA, indicate that mosquitoes of three genera, Aedes, Anopheles, and Culex are able to locate and land on surface-active manatees, and at minimum, penetrate and probe manatee epidermis with their mouthparts.