Background The aim of this study was to investigate whether plasma midregional proadrenomedullin (MR-proADM) reflected body composition, such as body mass index (BMI), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), VAT/SAT ratio, body fat mass (BFM), and skeletal muscle mass (SMM). Methods A total of 2244 individuals (727 men and 1517 women) were included in the study. Multiple regression analysis was performed to assess the combined influence of variables age, daily alcohol consumption, Brinkman index, sleeping time, metabolic equivalents, anamnesis for hypertension, dyslipidemia, diabetes, and body composition of MR-proADM, by using a stepwise forward selection method. Results MR-proADM was significantly related to all anthropometric indices (BMI, VAT, SAT, VAT/SAT ratio, BFM, and SMM) in men and women. On the basis of a stepwise forward selection method, VAT (men beta = 0.184, p less then 0.001, women beta = 0.203, p less then 0.001) and BFM (beta = 0.181, p less then 0.001) in women, were found to be significantly associated with MR-proADM. Conclusion This study suggests that plasma MR-proADM concentration is a more reliable indicator of VAT for fat distribution, and thus, MR-proADM may help better understand the obesity paradox. Changes in circulating levels of MR-proADM could possibly reflect changes in body composition, endocrine, and metabolic milieu.Over the past 10 years, knowledge about several aspects of fruit metabolism has been greatly improved. Notably, high-throughput metabolomic technologies have allowed quantifying metabolite levels across various biological processes, and identifying the genes that underly fruit development and ripening. This Special Issue is designed to exemplify the current use of metabolomics studies of temperate and tropical fruit for basic research as well as practical applications. It includes articles about different aspects of fruit biochemical phenotyping, fruit metabolism before and after harvest, including primary and specialized metabolisms, and bioactive compounds involved in growth and environmental responses. The effect of genotype, stages of development or fruit tissue on metabolomic profiles and corresponding metabolism regulations are addressed, as well as the combination of other omics with metabolomics for fruit metabolism studies.Negatively charged microspheres (NCMs) represent a new therapeutic approach for wound healing since recent clinical trials have shown NCM efficacy in the recovery of hard-to-heal wounds that tend to stay in the inflammatory phase, unlocking the healing process. The aim of this study was to elucidate the NCM mechanism of action. NCMs were extracted from a commercial microsphere formulation (PolyHeal® Micro) and cytotoxicity, attachment, proliferation and viability assays were performed in keratinocytes and dermal fibroblasts, while macrophages were used for the phagocytosis and polarization assays. We demonstrated that cells tend to attach to the microsphere surface, and that NCMs are biocompatible and promote cell proliferation at specific concentrations (50 and 10 NCM/cell) by a minimum of 3 fold compared to the control group. Furthermore, NCM internalization by macrophages seemed to drive these cells to a noninflammatory condition, as demonstrated by the over-expression of CD206 and the under-expression of CD64, M2 and M1 markers, respectively. NCMs are an effective approach for reverting the chronic inflammatory state of stagnant wounds (such as diabetic wounds) and thus for improving wound healing.In this case control study, we examined the retinal thickness of the different layers in the macular region and peripapillary retinal nerve fiber layer (RNFL) with optical coherence tomography (OCT) in healthy cognitive subjects (from 51 to 74 years old) at high genetic risk for developing Alzheimer's disease (AD). Thirty-five subjects with a family history of Alzheimer disease (AD) (FH+) and ApoE ɛ4 carriers and 29 age-matched control subjects without a family history of AD (FH-) and ApoE ɛ4 non-carriers were included. Compared to FH- ApoE ɛ4 non-carriers, in FH+ ApoE ɛ4 carriers, there were statistically significant decreases (p less then 0.05) in (i) the foveal area of mRNFL; (ii) the inferior and nasal sectors in the outer and inner macular ring in the inner plexiform layer (IPL); (iii) the foveal area and the inferior sector in the outer macular ring in the inner nuclear layer (INL); and (iv) the inferior sector of the outer macular ring in the outer plexiform layer (OPL). However, no statistically significant differences were found in the peripapillary thickness of RNFL between both study groups. In subjects with cognitive health and high genetic risk for the development of AD, initial changes appeared in the macular area. https://www.selleckchem.com/products/turi.html OCT could be a promising, cost-effective and non-invasive test useful in early AD, before the onset of clinical symptoms.The mechanistic involvement of the renin-angiotensin system (RAS) reaches beyond cardiovascular physiopathology. Recent knowledge pinpoints a pleiotropic role for this system, particularly in the lung, and mainly through locally regulated alternative molecules and secondary pathways. Angiotensin peptides play a role in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. This manuscript reviews the literature supporting a role for the renin-angiotensin system in the lung tumor microenvironment and discusses whether blockade of this pathway in clinical settings may serve as an adjuvant therapy in lung cancer.Under acidic conditions and at high ionic strength, the zinc cation is removed from its metal complex with 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) thus leading to the diacid free porphyrin, that subsequently self-organize into J-aggregates. The kinetics of the demetallation step and the successive supramolecular assembly formation have been investigated as a function of pH and ionic strength (controlled by adding ZnSO4). The demetallation kinetics obey to a rate law that is first order in [ZnTPPS4] and second order in [H+], according to literature, with k2 = 5.5 ± 0.4 M-2 s-1 at 298 K (IS = 0.6 M, ZnSO4). The aggregation process has been modeled according to an autocatalytic growth, where after the formation of a starting seed containing m porphyrin units, the rate evolves as a power of time. A complete analysis of the extinction time traces at various wavelengths allows extraction of the relevant kinetic parameters, showing that a trimer or tetramer should be involved in the rate-determining step of the aggregation.