https://www.selleckchem.com/products/sch-900776.html RESULTS Mean square error (MSE) and correlation coefficient (CC) are used to evaluate the correlation between C-band sensing technique and contact respiratory sensor. The results show that all the MSE are less than 0.6 and all CC are more than 0.8, yielding a significant correlation between the two used for detecting each breathing pattern. Clinical Impact C-band sensing technique is not only used to determine respiratory rates but also to identify breathing patterns, regarding as a preferred noncontact alternative approach to the traditional contact sensing methods. C-band sensing technique also provides a basis for the non-invasive detection of certain respiratory disorders. 2168-2372 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http//www.ieee.org/publications_standards/publications/rights/index.html for more information.OBJECTIVE Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap. METHODS To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation. RESULTS The proposed method namely