0 to 4.5 V at 1C compared to the bare NCM622. Meanwhile, the dual-modified NCM622 shows an improved reversible capacity of 136.2 mA h g-1 at 5C and enhanced electrode kinetics. The dual-modification strategy may enable a new approach to simultaneously relieve the interfacial instability and bulk structure degradation of Ni-rich cathode materials for high energy density LIBs.With the potential to be an excellent field electron emitter, few-layer graphene (FLG) has to avoid Joule heat induced vacuum breakdown during high current field electron emission. Creating a good heat dissipation path is the key factor maintaining the heat equilibrium of a field emitter. In this work, a graphite interlayer was grown between the FLG and the tungsten substrate. The graphite interlayer with its good in plane electrical and thermal conductivities helps FLG dissipate the heat in the lateral direction efficiently and broaden the heat dissipation path. As a result, both the temperature of the FLG and the chance of vacuum breakdown were reduced. The destructive in situ TEM field emission test of a single FLG showed that the breakage of the graphite interlayer during field emission blocks up the lateral heat dissipation path, causes heat accumulation and finally induces the vacuum breakdown of FLG. Benefiting from the graphite interlayer, the high current field emission characteristics of a single FLG were achieved. The maximum field emission current of six single FLG samples was between 78 and 233 μA with the corresponding current densities in the range of 1.2 × 107-5.85 × 108 A cm-2. This finding demonstrates that interface heat engineering is crucial for nanomaterial-based field emitters that work under high current and high temperature conditions.The structure of a cyclic peptide with important biological functionalities, cyclosporin A (CsA), is investigated at the single molecule level. Its adsorption on Cu(111) under ultra-high vacuum is characterised with scanning tunnelling microscopy (STM) and density functional theory. With STM investigations, we demonstrate element specific on-surface coordination schemes of CsA with coadsorbed K, Co and Fe atoms. https://www.selleckchem.com/products/CP-690550.html Thus, clear insights emerge in the behaviour of cyclic peptides at interfaces and their interactions with different metal atoms, providing control of the adsorption structure and assembly and paving the way for the integration of cyclic peptides in functional metal-organic nanostructures on surfaces.Diacyl peroxides, (RCO2)2, are readily available and widely used reagents for organic synthesis, because they can serve as electrophiles, oxidants, and radical sources. Recently, they have been used extensively as sources of O- and C-functional groups, in contrast to their classical applications as radical initiators. These novel reaction modes have greatly expanded the synthetic utility of diacyl peroxides by making it possible to simultaneously utilize plural functionalities of diacyl peroxides in unprecedented ways, with or without the aid of transition-metal catalysts. Here, we review recent advances in reactions utilizing diacyl peroxides as O- and C-sources, with examples illustrating how the reactivity of diacyl peroxides in organic reactions can be controlled.SiSbTe phase change materials (PCMs) have excellent thermal stabilities. Their properties and microstructures are strongly affected by their Si content. Si3.3Sb2Te3 (SST) gives the best electrical performance, at Si contents of around 40%. Here, use of a combination of an advanced three-dimensional (3D) tomography technique and transmission electron microscopy clearly showed that a crystallized SST film has a uniform equiaxed-structure in 3D space, and consists of a reversible Sb2Te3 (ST) phase and an amorphous (a-) Si phase, which are well nested with each other. The a-Si nest localizes structure switching and diffusion of the host element in the nano-area. The most innovative aspect is significant retention of the metastable face-centered cubic (f-) ST phase, even above 370 °C, in this bicontinuous system. Specifically, the a-Si frame is stable and the ST phase switches between a- and f-structures under external stimulation. This promotes faster SET speed and low-power RESET consumption. Our results give new insights into PCM systems. They suggest that bicontinuous structures are potential candidates for use in phase-change random access memory devices, especially in automotive electronics applications that require a high data retention ability.Soft matter at solid-liquid interfaces plays an important role in multiple scientific disciplines as well as in various technological fields. For microgels, representing highly interesting soft matter systems, we demonstrate that the preparation method, i.e. the way how the microgel is applied to the specific surface, plays a key role. Focusing on the three most common sample preparation methods (spin-coating, drop-casting and adsorption from solution), we performed a comparative study of the deformation behavior of microgels at the solid-liquid interface on three different surfaces with varying hydrophilicities. For in situ visualization of the deformation of pNIPMAM microgels, we conducted highly sensitive 3D super resolution fluorescence microscopy methods. We furthermore performed complementary molecular dynamics simulations to determine the driving force responsible for the deformation depending on the surface and the deposition method. The combination of experiments and simulations revealed that the simulated equilibrium structure obtained after simulation of the completely dry microgel after deposition is retained after rehydration and subsequent fluorescent imaging.This article highlights recent examples of the design and synthesis of zeolite-like metal-organic frameworks (ZMOFs). ZMOFs are a subset of metal-organic frameworks (MOFs) that exhibit the same topologies as traditional inorganic zeolites. These frameworks have attracted research interest because of their unique pore systems and distinctive cage-based cavities. With the adoption of a molecular building block (MBB) strategy, many ZMOFs with high stability and performance can be rationally designed and synthesized using various secondary building units (SBUs).