https://www.selleckchem.com/products/Abitrexate.html These findings emphasise the importance of gaining a comprehensive understanding of the diverse roles of tau at distinct intraneuronal locations. An improved knowledge of the impact of synaptic tau under physiological and pathological conditions and how tau localisation impacts on neuronal function will provide valuable insights that may lead to the development of new therapies for the tauopathies.Mutations in MAPT (Tau) have been implicated in several types of tauopathy, but the pathways leading to neurodegeneration have remained elusive and are heterogeneous. Here we describe the effects of two mutations, both linked to AD or FTD, that are located in different domains of Tau and show different pathways of toxicity. The deletion mutation ΔK280 lies in the repeat domain and strongly increases β-structure and hence aggregation, whereas the mutation A152T lies in the N-terminal projection domain, has little effect on aggregation but instead on signalling. Both mutations cause presynaptic dysfunction, but in opposite ways, leading to hypoexcitability/hypoactivity vs. hyperexcitability/excitotoxicity, respectively. In organotypic slices these abnormal states can be reversed by drugs, e.g. Tau aggregation inhibitors or modulators of glutamate uptake. This information could contribute to the understanding of "normal" Tau biology and possible therapeutical strategies.Tau is a microtubule-associated protein that is involved in both normal and pathological processes in neurons. Since the discovery and characterization of tau over 40 years ago, our understanding of tau's normal functions and toxic roles in neurodegenerative tauopathies has continued to expand. Fast axonal transport is a critical process for maintaining axons and functioning synapses, critical subcellular compartments underlying neuronal connectivity. Signs of fast axonal transport disruption are pervasive in Alzheimer's disease and other tauopathies and var