More meaningfully, the coordination mechanism of W1H toward uranium was clarified by theoretical calculation of the electron cloud density distribution, Ebind, and 1H NMR, IR and MS for the first time. With the more excellent uranyl sensitivity, selectivity, and recyclability, W1H and its colorimetric test strip have been applied to the detection of low-concentration uranium in environmental samples around the uranium tailings, providing a useful on-site method to monitor trace uranium in actual samples.Interleukin-6 (IL-6) is of high importance for disease diagnosis and prognosis in human health since it's a crucial component in immune homeostasis, hematopoiesis, and metabolism. Herein, an immunosensor has been developed for monitoring IL-6, which is fabricated by Au nanoparticles (Au NPs)-thionine (THI)-carboxylated multi walled carbon nanotubes (CMWCNTs) as the substrate with high conductivity. Staphylococcal protein A (SPA) could directionally capture antibody to reduce steric hindrance caused by random immobilization. Built upon the high efficiency of IL-6 antibody immobilization by the SPA on the sensing surface, the immunosensor exhibited a favorable activity for IL-6 detection. Under optimal conditions, the biosensor presented a LOD of 2.87 pg mL-1 and a wide linear range from 0.01 ng mL-1 to 800 ng mL-1 in serum samples. Furthermore, the assembled sensor successfully quantified the IL-6 concentration in serum and different tissue lapping liquids (lung, heart, liver) from rats with myocardial infarction. The satisfactory performance of the proposed sensor not only broadens its application in clinical monitoring of IL-6 but also provides a novel approach to study inflammation in rats.Polycyclic aromatic hydrocarbons (PAHs), tetracyclines (TCs), and triphenylmethane dyes (TDs) are common organic pollutants, which may threat the human health or natural microbial communities. In this work, we report a novel multifunctional sorbent based on core-shell magnetic carboxylate-functionalized covalent organic frameworks composites (Fe3O4@COF-COOH) for the simultaneous adsorption of these target analytes via mixed-mode solid phase extraction. The behaviors of the synthetic composite for the adsorption of PAHs, TCs, and TDs were evaluated based on the Freundlich and Langmuir isotherm models. In combination with quantum chemistry calculations, it was found that the multiple interactions including π-π stacking, hydrogen bonding, and electrostatic attractions were existed between COF-COOH and guest molecules. The extraction parameters were optimized, and a novel simultaneous absorption-stepwise desorption (SASD) strategy for the enrichment of PAHs, TCs, and TDs was proposed. By coupling with HPLC-DAD method, the validation results revealed good linearities (R2 ≥ 0.9882) for all analytes. High sensitivity with LODs within the range of 0.003-0.008, 0.02-0.06, and 0.006-0.008 μg L-1 were obtained for PAHs, TCs, and TDs, respectively. High recoveries ranging from 93.6 to 105.8% were obtained with intra-day RSDs of 2.2-6.3% and inter-day RSDs of 3.2-6.5%. The obtained results demonstrated that the proposed SASD strategy using Fe3O4@COF-COOH as sorbents can be extended to other aqueous solutions consisting of trace multi-target analytes.Food allergies have become a nonnegligible food safety issue, and milk allergies are one of the most common food allergies, that has attracted large consumer attention. In this work, a novel label-free photoelectrochemical (PEC) immunosensor for the detection of the allergen β-lactoglobulin (β-LG) in dairy products was designed that used the specific recognition of allergen β-LG and antibodies in dairy products in combination with biosensing technology. Here, Ag2S-sensitized spindle-shaped BiVO4/BiOBr heterojunction was fixed on the surface of the ITO electrode as an excellent photoactive substrate and effectively improved the photocurrent responses and sensitivity. Thioglycolic acid (TGA) was used as a linker to immobilize the β-LG antibody on the surface of the electrode. The photocurrent was detected at different antigen concentrations, which realized the quantitative testing of β-LG. Under the optimal experimental conditions, the PEC immunosensor proved an ideal linear relationship ranging from 10 pg/mL to 100 ng/mL, with a low detection limit of 3.7 pg/mL. The designed immunosensor showed good stability, a wide linear range, high sensitivity and good reproducibility and could be used for the detection of actual samples. The PEC immunosensor had a strong ability to specifically recognize β-LG, which was not affected by other proteins in the milk without pretreatment. Meanwhile, the developed immunosensor provided a promising PEC detection platform and reference idea for the detection of other proteins in milk.Here, a highly sensitive and selective copper ion (Cu2+) fluorescence sensor is reported. The Hematoporphyrin functionalized Graphene Oxide (HP-GO) fluorescence sensor were synthesized via esterification reaction between Graphene Oxide and Hematoporphyrin (HP). The HP-GO sensor was fully characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electrom Microscopy (SEM), UV-Vis spectroscopy, Transmission Electron Microscopy (TEM), Fluor meter spectroscopy, X-Ray photoelectron spectroscopy(XPS), and Raman spectroscopy measurements. The HP-GO sensor advertised two linear regions over the range of 0-1.18 × 103 nM and 3.93 × 103 to 47.27 nM of copper (II) with detection limit of 54 nM in the aqueous solution. The selectivity of HP-GO for Cu2+ is much higher than that of other metal ions due to the presence of aza macrocyclic ring on the surface of HP-GO which has a high binding affinity with Cu2+. Additionally, the HP-GO shows wide pH viable range (pH 6-10). The effect of other metal ions on the fluorescence intensity of the HP-GO was also studied and other metal ions show a low interference response in the detection of Cu2+. https://www.selleckchem.com/products/cnqx.html HP-GO sensor manifests advantages of high reproducibility (The quenched fluorescence of HP/GO-Cu can be recovered by EDTA), attractive long term fluorescence stability (>21 days) in water, also remarkable selectivity regarding number of metal ions (Na+, K+, Ca2+, Fe3+, Fe2+, Al3+, Pb2+, Mn2+, Mg2+, Co2+, Ni2+, Cr6+, Cd2+, Hg2+, and Zn2+), low toxicity and can detect Cu2+ in real water samples which acquire well for its promising in environmental applications.