https://www.selleckchem.com/products/Temsirolimus.html Toxicogenomics, the application of genomics to toxicology, was described as 'a new era' for toxicology. Standard toxicity tests typically involve a number of short-term bioassays that are costly, time consuming, require large numbers of animals and generally focus on a single end point. Toxicogenomics was heralded as a way to improve the efficiency of toxicity testing by assessing gene regulation across the genome, allowing rapid classification of compounds based on characteristic expression profiles. Gene expression microarrays could measure and characterise genome-wide gene expression changes in a single study and while transcriptomic profiles that can discriminate between genotoxic and non-genotoxic carcinogens have been identified, challenges with the approach limited its application. As such, toxicogenomics did not transform the field of genetic toxicology in the way it was predicted. More recently, next generation sequencing (NGS) technologies have revolutionised genomics owing to the fact that hundredshow the development of NGS technologies and new machine learning algorithms may finally realise that promise. © The Author(s) 2020. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society.All rights reserved. For permissions, please e-mail journals.permissions@oup.com.Contemporary data indicate that patients with signs and symptoms of ischaemia and non-obstructive coronary artery disease (INOCA) often have coronary microvascular dysfunction (CMD) with elevated risk for adverse outcomes. Coronary endothelial (constriction with acetylcholine) and/or microvascular (limited coronary flow reserve with adenosine) dysfunction are well-documented, and extensive non-obstructive atherosclerosis is often present. Despite these data, patients with INOCA currently remain under-treated, in part, because existing management guidelines do not address this large, mostly female population due to