https://www.selleckchem.com/products/Ispinesib-mesilate(SB-715992).html Achieving well-defined polymers with ultrahigh molecular weight (UHMW) is an enduring pursuit in the field of reversible deactivation radical polymerization. Synthetic protocols have been successfully developed to achieve UHMWs with low dispersities exclusively from conjugated monomers while no polymerization of unconjugated monomers has provided the same level of control. Herein, an oxygen-tolerant photoenzymatic RAFT (reversible addition-fragmentation chain transfer) polymerization was exploited to tackle this challenge for unconjugated monomers at 10 °C, enabling facile synthesis of well-defined, linear and star polymers with near-quantitative conversions, unprecedented UHMWs and low dispersities. The exquisite level of control over composition, MW and architecture, coupled with operational ease, mild conditions and environmental friendliness, broadens the monomer scope to include unconjugated monomers, and to achieve previously inaccessible low-dispersity UHMWs.ZIF-8 membranes have emerged as the most promising candidate for propylene/propane (C3 H6 /C3 H8 ) separation through its precise molecular sieving characteristics. The poor reproducibility and durability, and high cost, thus far hinder the scalable synthesis and industrial application of ZIF-8 membranes. Herein, we report a semi-solid process featuring ultrafast and high-yield synthesis, and outstanding scalability for reproducible fabrication of ZIF-8 membranes. The membranes show excellent C3 H6 /C3 H8 separation performance in a wide temperature and pressure range, and remarkable stability over 6 months. The ZIF-8 membrane features dimethylacetamide entrapped ZIF-8 crystals retaining the same diffusion characteristics but offering enhanced adsorptive selectivity for C3 H6 /C3 H8 . The ZIF-8 membrane was prepared on a commercial flat-sheet ceramic substrate. A prototypical plate-and-frame membrane module with an effective membrane