https://www.selleckchem.com/products/GDC-0941.html 7-fold according to field gamma-spectrometry data which corresponded to the radionuclide contamination density of the top 20-cm layer of the soil containing 96-99% of the total radionuclide amount (correlation between the parameters equaled to r0.01 = 0.782, n = 20). A specifically regular structure obviously formed under the set of radionuclide water migration processes seems to be inherent in all systems of the studied type. The results obtained are believed to be of both theoretical and practical importance, since they can contribute to making decisions on the precise monitoring of zones of technogenic accumulation, as well as solving fundamental problems of soil formation and its restoration after technogenic pollution.Melatonin, being an endogenous signaling molecule plays important role in plant growth and stress alleviation. The present study was conducted to evaluate the ameliorative role of melatonin against Cr toxicity in maize seedlings. The Cr toxicity (50, 100 and 200 µM) severely affected hydroponically grown seedlings growth in a dose-dependent manner; however, the melatonin (0.5 and 1.0 µM) application markedly restored toxicity-induced growth retardation. Higher dose of melatonin (1.0 µM) was more effective in case of lower Cr toxicity (50 and 100 µM). Exposure of 200 µM Cr caused 45% and 43% reduction in shoot and root lengths and more than 80% reduction in biomass. In case of 200 µM Cr toxicity, application of 1.0 µM MT effectively restored shoot and root lengths reduction (from 45 to 30%) and biomass decline (from 80 to around 60%). Biomass restoration by 1.0 µM melatonin under 50 and 100 µM Cr was even more pronounced bringing it near to control plants having no Cr exposure. Further, both melatonin levels an of antioxidative enzymatic system.An implementation of the three-component one-pot approach to unsymmetrical 1,3,5-trisubstituted-1,2,4-triazoles into combinatorial chemistry is described. T