This study aimed to investigate the effects of lead (Pb) exposure on parotid and submandibular glands through morphological aspects as well as the systemic and salivary gland redox state. Male Wistar rats were exposed to 50 mg/kg/day of Pb-acetate or distilled water by intragastric gavage for 55 days (n = 40). Blood samples were used for lipid peroxidation (LPO), glutathione (GSH), and trolox equivalent antioxidant capacity (TEAC) assays. Samples of salivary glands were analyzed by LPO, nitrites (NO), and antioxidant capacity against peroxyl radicals (ACAP) levels. Morphometric analyses (total stromal area [TSA], total parenchyma area [TPA], total ductal area [TDA], and total acinar area [TAA]) and immunohistochemistry for cytokeratin-19 (CK-19), metallothionein I/II (MT I/II), and anti-smooth muscle actin (α-SMA) were performed. The results revealed that exposure to Pb triggered systemic oxidative stress represented by lower GSH levels and increased TBARS/TEAC ratio in blood plasma. ACAP was reduced, while NO and LPO were increased in both parotid and submandibular. The morphological analyses showed increase on MT I/II expression, reduced CK-19 expression in both glands, and α-SMA reduced the immunostaining only in the parotid glands. The morphometric analyses revealed an increase in TPA in both glands, while TAA was reduced only in submandibular glands and TDA was increased only in parotid glands. Our findings are pioneer in showing that long-term exposure to Pb is able to promote blood and glandular oxidative stress associated with cellular, morphological, and biochemical damage in both parotid and submandibular glands.Nitric oxides (NOx, which mainly include more than 90% NO) are one of the major air pollutants leading to a series of environmental problems, such as acid rain, haze, photochemical smog, etc. The selective catalytic oxidation of NO to NO2 (NO-SCO) is regarded as a key process for the development of selective catalytic reduction of NOx by ammonia (via fast selective catalytic reduction reaction) and also the simultaneous removal of multipollutant (pre-oxidation and post-absorption). Until now, scholars have developed various types of NO-SCO catalysts, dividing the main groups into noble metals (Pt, Pd, Ru, etc.), metal oxides (Mn-, Co-, Cr-, Ce-based, etc.), perovskite-type oxides (LaMnO3, LaCoO3, LaCeCoO3, etc.), carbon materials (activated carbon, carbon fiber, carbon nanotube, graphene, etc.), and zeolites (ion-exchanged ZSM-5, CHA, SAPO, MCM-41, etc.) in this review. This paper summarizes the recent progress of the above typical catalysts and mostly analyzes the catalytic performance for NO oxidation in terms of the H2O and/or SO2 resistances and also the influencing factors, and their reaction mechanisms are described in detail. Finally, this review points out the key problems and possible solutions of the current researches and presents the application prospects and future development directions of NO-SCO technology using the above typical catalysts.In the last decade, aircraft-induced environmental issues have attracted much research interest. In addition to studies on performance related emissions, air pollution and emissions in the field of airports also draw attention. Within this framework, the Antalya International Airport, one of the busiest airports in Turkey, is assessed from the viewpoint of the environment and economics. https://www.selleckchem.com/products/bp-1-102.html The present paper reveals the environmental impact and environmental cost of emitted exhaust gases from aircraft operating at the Antalya International Airport in July, 2018, the busiest period in the year. Within this scope the emissions indexes of each exhaust gas, global warming potential and environmental cost of various aircraft types and airways are calculated. To determine these parameters, real-time measurement data has been obtained from the Ministry of Transport and Infrastructure of the Republic of Turkey. At the end of the analyses, aircraft of the B737 family are found to have the highest global warming potential and environmental cost, with values of 630,633.3 GWP and 39,723.4 Euros, respectively. In a future study, the authors intend to evaluate particulate matter emissions at the same airport.Disinfection by-products (DBPs) discharged from sewage treatment plants (STPs) could harm downstream receiving waters and drinking water resources. In-stream attenuation of photo- and non-photodegradable DBPs during river transportation is currently not well understood. Here we sought to fill this knowledge gap by meta-data-analysis for modeling in-stream attenuation of DBPs. Data were collected along a treated-wastewater-dominated 1.6-km stretch of a river channel for 3 years and incorporated seasonal and diurnal patterns. Photo-irradiation and water temperature were the main factors responsible for in-stream attenuation of photodegradable N-nitrosodimethylamine (NDMA), and water temperature for that of non-photodegradable formaldehyde (FAH). The factors were incorporated into photo-dependent and -independent models to account for temporal variations in NDMA and FAH, respectively. Estimated mass recoveries of NDMA and FAH agreed well with observed values along the stretch. The models developed here offer a novel and useful tool for estimating levels of NDMA and FAH during river transportation.We studied the removal of 61 emerging micropollutants, including illicit drugs, in a biofilter wastewater treatment plant located in the French Indies (Martinique). Raw wastewater concentrations were the highest for paracetamol followed by caffeine, naproxen, ibuprofen, its metabolite 2-hydroxyibuprofen, atenolol, ketoprofen, furosemide, methylparaben, cocaine, benzoylecgonine, and 11-nor-delta-9-carboxytetrahydrocannabinol (THC-COOH). The calculated removals were better than those reported in the literature, while the cumulative removal efficacy (i.e., removal of the total mass load) was estimated to be 92 ± 4%. However, this good performance may be partly explained by the removal of paracetamol (also named acetaminophen) and caffeine, which represented 86.4% of the total mass load. Our results point to the adsorption of some molecules on sludge, thus raising the question about local soil pollution from sludge spreading.