https://www.selleckchem.com/products/VX-702.html Green photosynthetic bacteria with an efficient light-harvesting system contain special chlorophyll molecules, called bacteriochlorophylls c, d, e, in their main antennae. In the biosynthetic pathway, a BciC enzyme is proposed to catalyze the hydrolysis of the C132-methoxycarbonyl group of chlorophyllide a, but the resulting C132-carboxy group has not been detected yet because it is spontaneously removed due to the instability of the β-keto-carboxylic acid. In this study, the in vitro BciC enzymatic reactions of zinc methyl (131R/S)-hydroxy-mesochlorophyllides a were examined and a carboxylic acid possessing the C132S-OH was first observed as the hydrolyzed product of the C132-COOCH3.A ferrocene-substituted thiobarbituric acid (FT) has been synthesized to explore its photophysical properties and photodynamic and photoantimicrobial chemotherapy activities. FT has an intense metal-to-ligand charge transfer (MLCT) band at ca. 575 nm. The ferrocene moiety of FT undergoes photooxidation to form a ferrocenium species which in turn produces hydroxyl radical in an aqueous environment, which was confirmed via the bleaching reaction of p-nitrosodimethylaniline (RNO). FT exhibits efficient PDT activity against MCF-7 cancer cells with an IC50 value of 5.6 μM upon irradiation with 595 nm for 30 min with a Thorlabs M595L3 LED (240 mW cm-2). Photodynamic inactivation of Staphylococcus aureus and Escherichia coli by FT shows significant activity with log reduction values of 6.62 and 6.16 respectively, under illumination for 60 min at 595 nm. These results demonstrate that ferrocene-substituted thiobarbituric acids merit further study for developing novel bioorganometallic PDT agents.Our research group has been studying the design of intracellular delivery peptides based on cationic lytic peptides. By placing negatively charged amino acids on potentially hydrophobic faces of the peptides, membrane lytic activity is attenuated on the c