https://www.selleckchem.com/peptide/pmx-205.html Our results showed that the diet and movement ecology adaptations of northern pigtailed macaques were largely dependent on availability of native fruits, and reflected a "high-cost, high-yield" foraging strategy when fresh food was scarce and dry fruit was available in plantation forest. Conversely, wild-feeding northern pigtailed macaque populations inhabiting pristine habitat approached a "low-cost, low-yield" foraging strategy. Our results outline the effects of habitat degradation on foraging strategies and show how a flexible species can cope with its nutritional requirements. © 2020 Wiley Periodicals, Inc.BACKGROUND Urinalysis is not routinely used in bovine medicine, and there is no evidence as to whether urine protein-to-creatinine ratio (UPC) could be used for the diagnosis of renal diseases in cattle. OBJECTIVE The goal of the study was to determine alterations in UPCs observed with different subclinical renal diseases in clinically healthy cattle and to investigate whether UPC can efficiently differentiate cattle with and without subclinical renal pathology. METHODS Kidney and urine samples from 57 clinically healthy adult dairy (44) and beef (13) cattle were collected after slaughter. Urinary protein and creatinine concentrations were measured in an automatic analyzer, and urinary-specific gravity (USG) was measured using a temperature compensated refractometer. Kidney samples underwent histopathologic examination, and the cattle were classified as NL (no renal lesion) and L (lesions detected even in one kidney). Based on USG, the cattle were divided into the Normal USG (≥1.020) and Low USG ( .05). The analysis revealed that a UPC of ≥0.19 provided an optimal cut-off point for the differentiation between normal animals and those with renal disease with 66.0% sensitivity and 90% specificity. CONCLUSIONS The UPC calculation is a useful tool for the differentiation of normal cattle and those with renal diseas