https://www.selleckchem.com/products/remdesivir.html tudy, an accuracy rate of 99.7% (with kNN classifier and KMCCD-based weighting) is obtained in the data set of Motor Imaginary. Similarly, an accuracy rate of 99.9% (with SVM and kNN classifier and KMCCD-based weighting) is obtained in the Mental Activity dataset. The weighting method is used to increase the classification accuracy, and it has been shown that it will contribute to the classification of EEG and NIRS BCI systems. The results show that the proposed method increases classifiers' performance, offering less processing power and ease of application. In the future, studies could be carried out by combining the k-Means clustering center-based weighted hybrid BCI method with deep learning architectures. Further improved classifier performances can be achieved by combining both systems.Complex scientific experiments from various domains are typically modeled as workflows and executed on large-scale machines using a Parallel Workflow Management System (WMS). Since such executions usually last for hours or days, some WMSs provide user steering support, i.e., they allow users to run data analyses and, depending on the results, adapt the workflows at runtime. A challenge in the parallel execution control design is to manage workflow data for efficient executions while enabling user steering support. Data access for high scalability is typically transaction-oriented, while for data analysis, it is online analytical-oriented so that managing such hybrid workloads makes the challenge even harder. In this work, we present SchalaDB, an architecture with a set of design principles and techniques based on distributed in-memory data management for efficient workflow execution control and user steering. We propose a distributed data design for scalable workflow task scheduling and high availability driven by a parallel and distributed in-memory DBMS. To evaluate our proposal, we develop d-Chiron, a WMS designed according