Exposure to ambient PM2.5 substantially contributed to mortality and hospital admissions 871 deaths for non-accidental causes, 515 deaths for cardiovascular diseases, 47 deaths for respiratory diseases, as well as 1034 hospital admissions for cardiovascular diseases and 834 for respiratory diseases were reported between 2010 and 2019. Compliance with WHO annual limit values can result in substantial socio-economic benefits by preventing premature deaths and hospital admissions. For instance, based on the value of a statistical life and average cost of a hospital admission, the associated benefit for healthcare would have been €131 million in 2019. Between 2010 and 2019, the number of PM2.5-related non-accidental deaths decreased by 1.15 per 105 inhabitants annually. Compared to 2010-2019, the restrictive measures associated to COVID-19 pandemic led to a reduction in PM2.5 of 11% in Marseille, with 2.6 PM2.5-related deaths averted in 2020.Phosphorus (P) is an essential nutrient, limiting plant growth and microbial activity in many ecosystems. However, a few studies have been conducted to investigate P dynamics and the factors driving P dynamics in peatland soils. Therefore, this study chose Zoige Plateau peatland (the largest peatland in China) to reveal P dynamics and the possible driving factors through fractionating soil P and investigating a series of abiotic and biotic factors. It is found that season, peatland type, and soil depth could strongly affect P dynamics. H2O-P and NaHCO3-P (labile P) had lower content, while NaOH-P, HCl-P, Mix-P, and Residual-P (non-labile P) were the dominant fractions. Besides, the sum of P fractions was higher than the traditional measurement of total P, suggesting P storage might be underestimated in peatland soils. Moreover, it is observed that biotic factors affected P fractions more than abiotic factors, and fungi affected refractory P more than bacteria. This study provides essential information for understanding P cycling in peatland soils and emphasizes specific microbes related to P cycling, which should be paid more attention to in the future.Quantitative insight into the HCO3--dependent degradation kinetics is critical to improve understanding of the UV processes for the most-cost effective application. In this study, we developed a kinetic model to precisely predict the kinetics in UV/H2O2 and UV/chlorine processes. The second-order rate constants of HO, Cl, ClO, Cl2-, and CO3- with carbamazepine (CBZ) were fitted as 1.3 × 109, 1.9 × 109, 1.8 × 106, 1.1 × 105, and 4.5 × 106 M-1 s-1, respectively. Based on the model, we investigated the significant impact of bicarbonate (HCO3-) and subsequently generated carbonate radical (CO3-) on CBZ degradation, radical chemistry, and energy requirement of UV/H2O2 and UV/chlorine processes. The presence of HCO3- inhibited CBZ degradation in UV/H2O2 and UV/chlorine processes to different degree. https://www.selleckchem.com/Androgen-Receptor.html Contributions of HO, Cl, ClO, Cl2-, and CO3- to CBZ degradation in UV/H2O2 and UV/chlorine processes in the absence/presence of HCO3- were investigated. HO and CO3- make comparable contributions to CBZ degradation in UV/H2O2 process in the presence of HCO3- (2 mM), while ClO is always the main contributor at various HCO3- concentration of 0-2 mM. Furthermore, the presence of HCO3- in both processes increased the corresponding EE/O, when CBZ was degraded by an order of magnitude. Overall, HCO3- and CO3- influence the reactions and mechanism of UV/H2O2 and UV/chlorine processes, and have higher impact on UV/H2O2 process.Halonitromethanes (HNMs), typical nitrogenous disinfection byproducts generated during disinfection of chlorination and chloramination, are widely detected in drinking water. This study investigated the formation of two dominant HNMs, trichloronitromethane (TCNM) and dichloronitromethane (DCNM) during chlorination/chloramination of ten nitro-aromatic compounds (NACs), including six aromatic mono-nitro compounds, three aromatic di-nitro compounds and one aromatic tri-nitro compound. The results showed that 2-nitrophenol and 3-nitrophenol could be the main precursors of TCNM and DCNM, and the yields of TCNM were one order of magnitude higher than that of DCNM. HNMs formation in chlorination was much higher than that in chloramination. However, HNMs were hardly produced during chlorination and chloramination of the other eight NACs. In chlorination of 2-nitrophenol, a pH range of 5.0-7.0 facilitated the TCNM formation. Besides, the concentration of ferric and manganese ions had different influences on TCNM formation. While the concentration ranges were 0-2 mg/L, ferric ion significantly decreased TCNM formation but manganese ion had not any influence on TCNM formation. Contrary to a previous finding, nitrite significantly reduced TCNM formation, which implied that nitrite has different effects on TCNM formation from various precursors. Moreover, dissolved organic matter (DOM, 0-5 mg/L as C) significantly influenced the formation of TCNM in chlorination of 2-nitrophenol despite the low TCNM formation in chlorination of DOM. Several chlorinated intermediates were detected and identified as mono/di/tri-chloro-2-nitrophenol during chlorination of 2-nitrophenol. It is effectively to reduce the production of TCNM and DCNM formation from chlorination of 2-nitrophenol by controlling disinfection conditions in drinking water.Al30 is the polycation with the highest degree of polymerization and surface charge in the currently known structural aluminum species. It shows excellent coagulation performance in water treatment process, and has the characteristics of wide application range of pH and dosage. pH value is one of the most important factors affecting the aggregation and coagulation process of Al30, but the influence of Al30 aggregation reaction on its coagulation effect is still unclear. Therefore, this article reports the deprotonation and aggregation reaction of Al30 by adjusting the basicity (B) of the solution, particularly to further understand the coagulation mechanism of Al30 under different conditions. The results showed that in the base titration process, when B 2.86, the size of Al30 aggregates (Al30agg) increased rapidly, forming gels and gradually transforming into Al(OH)3. In this process, in addition to the reduction of electrostatic repulsion induced by Al30 deprotonation, the oligomers generated by the partial dissociation of Al30 also play the role of bridging-connection.