https://www.selleckchem.com/products/td139.html Ticks are important human and animal parasites and vectors of many infectious disease agents. Control of tick activity is an effective tool to reduce the risk of contracting tick-transmitted diseases. The castor bean tick (Ixodes ricinus) is the most common tick species in Europe. It is also a vector of the causative agents of Lyme borreliosis and tick-borne encephalitis, which are two of the most important arthropod-borne diseases in Europe. In recent years, increases in tick activity and incidence of tick-borne diseases have been observed in many European countries. These increases are linked to many ecological and anthropogenic factors such as landscape management, climate change, animal migration, and increased popularity of outdoor activities or changes in land usage. Tick activity is driven by many biotic and abiotic factors, some of which can be effectively managed to decrease risk of tick bites. In the USA, recommendations for landscape management, tick host control, and tick chemical control are well-defined for the applied purpose of reducing tick presence on private property. In Europe, where fewer studies have assessed tick management strategies, the similarity in ecological factors influencing vector presence suggests that approaches that work in USA may also be applicable. In this article we review key factors driving the tick exposure risk in Europe to select those most conducive to management for decreased tick-associated risk.Ciliopathies are a group of human genetic disorders associated with mutations that give rise to the dysfunction of primary cilia. Ciliogenesis-associated kinase 1 (CILK1), formerly known as intestinal cell kinase (ICK), is a conserved serine and threonine kinase that restricts primary (non-motile) cilia formation and length. Mutations in CILK1 are associated with ciliopathies and are also linked to juvenile myoclonic epilepsy (JME). However, the effects of the JME-related mutation