https://www.selleckchem.com/products/mk-8353-sch900353.html The experimental and literature data demonstrated that sp3-hybridized carbon atoms on the surface are probably the preferable site for catalytic conversion of alcohols.3,4-methylenedioxypyrovalerone (MDPV) is a harmful and controlled synthetic cathinone used as a psychostimulant drug and as sport-enhancing substance. A sensor was developed for the direct analysis of MDPV by transducing its oxidation signal by means of an electropolymerized molecularly imprinted polymer (e-MIP) built in-situ on the screen-printed carbon electrode's (SPCE) surface previously covered with multi-walled carbon nanotubes (MWCNTs) and silver nanoparticles (AgNPs). Benzene-1,2-diamine was used as the functional monomer while the analyte was used as the template monomer. Each step of the sensor's development was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a solution containing ferricyanide, however no redox probe was required for the actual MDPV measurements. The interaction between the poly(o-phenylenediamine) imprinted polymer and MDPV was studied by density-functional theory (DFT) methods. The SPCE-MWCNT-AgNP-MIP sensor responded adequately to the variation of MDPV concentration. It was shown that AgNPs enhanced the electrochemical signal by around a 3-fold factor. Making use of square-wave voltammetry (SWV) the developed sensor provided a limit of detection (LOD) of 1.8 μmol L-1. The analytical performance of the proposed sensor paves the way to the development of a portable device for MDPV on-site sensing to be applied in forensic and doping analysis.This paper is focused on eicosanoid signaling in insect immunology. We begin with eicosanoid biosynthesis through the actions of phospholipase A2, responsible for hydrolyzing the C18 polyunsaturated fatty acid, linoleic acid (182n-6), from cellular phospholipids, which is subsequently converted into arachidonic acid (AA; 204n-6) via elonga