The correlation between the two hairiness components was weak and negative. According to our hairiness index, butterflies and moths were the hairiest pollinator group, followed by bees, hoverflies, beetles, and other flies. Among bees, bumblebees (Bombus) and mason bees (Osmia) were the hairiest taxa, followed by digger bees (Anthophorinae), sand bees (Andrena), and sweat bees (Halictini). Our methodology provides an effective and standardized measure of the two components of hairiness (hair density and length), thus allowing for a meaningful interpretation of hairiness. We provide a detailed protocol of our methodology, which we hope will contribute to improve our understanding of pollination effectiveness, thermal biology, and responses to climate change in insects. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.This study shows, for the first time, that the evolution of a simple behavior, scrounging, at the individual level can have effects on populations, food chains, and community structure. In particular, the addition of scrounging in consumer populations can allow multiple consumers to coexist while exploiting a single prey. Also, scrounging in the top predator of a tritrophic food chain can stabilize interactions between the top predator, its prey, and its prey's prey. This occurs because the payoffs to scrounging for food in a population are negative frequency dependent, allowing scroungers to invade a population and to coexist with producers at a frequency which is density-dependent. The presence of scroungers, who do not search for resources but simply use those found by others (producers) reduces the total amount of resource acquired by the group. https://www.selleckchem.com/products/ptc-209.html As scrounging increases with group size, this leads to less resource acquired per individual as the group grows. Ultimately, this limits the size of the group, its impact on its prey, and its ability to outcompete other species. These effects can promote stability and thus increase species diversity. I will further suggest that prey may alter their spatial distribution such that scrounging will be profitable among their predators thus reducing predation rate on the prey. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Species distribution models (SDMs) are statistical tools to identify potentially suitable habitats for species. For SDMs in river ecosystems, species occurrences and predictor data are often aggregated across subcatchments that serve as modeling units. The level of aggregation (i.e., model resolution) influences the statistical relationships between species occurrences and environmental predictors-a phenomenon known as the modifiable area unit problem (MAUP), making model outputs directly contingent on the model resolution. Here, we test how model performance, predictor importance, and the spatial congruence of species predictions depend on the model resolution (i.e., average subcatchment size) of SDMs. We modeled the potential habitat suitability of 50 native fish species in the upper Danube catchment at 10 different model resolutions. Model resolutions were derived using a 90-m digital-elevation model by using the GRASS-GIS module r.watershed. Here, we decreased the average subcatchment size gradually from pped predictions differ significantly and are highly contingent on the underlying subcatchment size. We encourage building freshwater SDMs across multiple catchment sizes, to assess model variability and uncertainties in model outcomes emerging from the MAUP. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Water availability may be altered by changes in precipitation under global climate change in alpine areas. Trait means and plasticity are important for plants in response to a changing environment. In an examination of alpine plant responses to changed water availability, and for determination of how trait means and plasticity predict the performance (e.g., biomass) of these species, seeds of ten Poaceae species from the eastern Tibetan Plateau were sown and grown in a manipulated environment during a growing season in which rainfall was removed and other climate conditions remained unchanged. Growth and leaf traits of these species were measured. We found significant effects of moderate water stress on the seedling biomass of these species; however, the responses of these species to changed water condition were strongly dependent on species identity. For example, the biomass of some species significantly decreased under moderate drought, whereas that of others were either significantly increased or unaffected. This pattern was also observed for growth and leaf traits. Overall, the alpine Poaceae species showed low plasticity of traits in response to water availability relative to reports from other areas. Notably, the results show that trait means were better correlated with the productivity than with the plasticity of traits; thus, we argue that the trait means were better predictors of performance than plasticity for alpine Poaceae species. Poaceae species in alpine areas are important for forage production and for water catchment health worldwide, and these species may face water shortage because of current and future climate change. Understanding the response of alpine Poaceae species to water availability would facilitate our ability to predict the impacts of climate change on the alpine vegetation. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.Endosymbionts associated with the whitefly Bemisia tabaci cryptic species are known to contribute to host fitness and environmental adaptation. The genetic diversity and population complexity were investigated for endosymbiont communities of B. tabaci occupying different micro-environments in Pakistan. Mitotypes of B. tabaci were identified by comparative sequence analysis of the mitochondria cytochrome oxidase I (mtCOI) gene sequence. Whitefly mitotypes belonged to the Asia II-1, -5, and -7 mitotypes of the Asia II major clade. The whitefly-endosymbiont communities were characterized based on 16S ribosomal RNA operational taxonomic unit (OTU) assignments, resulting in 43 OTUs. Most of the OTUs occurred in the Asia II-1 and II-7 mitotypes (r 2 = .9, p  less then  .005), while the Asia II-5 microbiome was less complex. The microbiome OTU groups were mitotype-specific, clustering with a basis in phylogeographical distribution and the corresponding ecological niche of their whitefly host, suggesting mitotype-microbiome co-adaptation.