The overall morbidity was 10 % including 5 surgical complications and 5 permanent neurological deficits. Neuropsychological assessments in 60 patients showed considerable preoperative impairment, losses in different domains in 25-45 % and gains in about 25 % of the patients. Postoperative HRQOL data was available in 75 patients, revealing significant increase of HRQOL in all domains. Complete seizure freedom was the strongest predictor for postoperative HRQOL (p less then 0.001). Conclusion Surgery for drug resistant temporal lobe epilepsy is a feasible option for elderly patients as seizure control rates are comparable to the younger population. The acceptable rate of permanent neurological deficits and relevant improvements in quality of life, despite considerable postoperative cognitive impairment, justify surgical resection in properly selected elderly patients.Purpose Children with epilepsy (CWE) are at risk of vitamin D deficiency. Single nucleotide polymorphisms (SNPs) affecting the vitamin D pathway are potentially important risk factors for serum 25-hydroxyvitamin D [25(OH)D] concentration. The aims of our study were to evaluate the association of vitamin d-related SNPs to serum 25(OH)D concentrations in Malaysian CWE. Methods Cross-sectional study of Malaysian ambulant CWE on antiseizure medication for >1 year. Sixteen SNPs in 8 genes (GC, VDR, CYP2R1, CYP24A1, CYP27B1, CYP27A1, CYP3A4, NADSYN1/DHCR7) were genotyped. Linear and logistic regression models and co-variates adjusted analyses were used. SNPs with significant associations were further analysed in a group of ethnically-matched healthy Malaysian children. Results 239 CWE were recruited (52.7% Malay, 24.3% Chinese and 23.0% Indian) with mean serum 25(OH)D of 58.8 nmol/L (SD 25.7). Prevalence of vitamin D deficiency (≤37.5 nmol/L) was 23.0%. Minor allele of GC-rs4588-A was associated with lower serum 25(OH)D in the meta-analysis of both CWE (β -8.11, P = 0.002) and Malaysian healthy children (β -5.08, P less then 0.001), while VDR-rs7975232-A was significantly associated with reduced odds of vitamin D deficiency in Malay subgroup of CWE (OR 0.16; 95% CI 0.06-0.49; P = 0.001) and this association was not found in the healthy children group. Conclusions Our results suggest that GC-rs4588 is associated with lower serum 25(OH)D concentration in both Malaysian CWE and healthy children, while VDR-rs7975232A is associated with lower risk of vitamin D deficiency in Malaysian CWE of Malay ethnicity. Our findings may assist in the genetic risk stratification of low vitamin D status among CWE.Ventrifissura is a group of poorly studied heterotrophic biflagellates in the phylum Cercozoa. Despite a phylogenetic placement with only weak support and a lack of ultrastructural data, Ventrifissura was assigned to Thecofilosea. In the presented study, we established cultures of two novel species of Ventrifissura (V. oblonga n. sp. and V. velata n. sp.) isolated from coastal marine environments in Japan, and performed light and electron microscopy observations and molecular phylogenetic analysis. Transmission electron microscopy revealed that V. oblonga shares several ultrastructural characteristics with thecofilosean flagellates, including permanently condensed chromosomes, a extracellular theca, and slender extrusomes. Molecular phylogenetic analysis could not resolve the phylogenetic position, but the possibility that Ventrifissura clusters into Ventrifilosa was supported by approximately unbiased tests. Based on both morphological and phylogenetic findings, we concluded that Ventrifissura is a basal lineage of Thecofilosea.A novel horseradish peroxidase (HRP) enzyme inhibition biosensor based on indium tin oxide (ITO) nanoparticles, hexaammineruthenium (III) chloride (RUT), and chitosan (CH) modified glassy carbon electrode (GCE) was developed. The biosensor fabrication process was investigated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The amounts of ITO nanoparticles and RUT were optimized using a 22 central composite design for the optimization of electrode composition. The detection limits were determined as 8 nM, 3 nM, and 1 nM for Pb2+, Ni2+, and Cd2+, respectively. The inhibition calibration curves of the biosensor were found to be within the range of 0.009-0.301 µM with a sensitivity of 11.97 µA µM-1 cm-2 (0.85 µA µM-1) for Pb2+, 0.011-0.368 µM with a sensitivity of 10.84 µA µM-1 cm-2 (0.77 µA µM-1) for Ni2+, and 0.008-0.372 µM with a sensitivity of 10.99 µA µM-1 cm-2 (0.78 µA µM-1) for Cd2+. The type of HRP inhibition by Pb2+, Ni2+ and Cd2+ was investigated by the Dixon and Cornish-Bowden plots. The effects of possible interfering species on the biosensor response were examined. The analysis of Pb2+, Ni2+, and Cd2+ in tap water was demonstrated using the HRP/ITO-RUT-CH/GCE with satisfactory experimental results. The proposed method agreed with the atomic absorption spectrometry results.Background Serum biomarkers may inform and improve care in traumatic brain injury (TBI). We aimed to correlate serum biomarkers with clinical severity, care path and imaging abnormalities in TBI, and explore their incremental value over clinical characteristics in predicting computed tomographic (CT) abnormalities. Methods We analyzed six serum biomarkers (S100B, NSE, GFAP, UCH-L1, NFL and t-tau) obtained less then 24 h post-injury from 2867 patients with any severity of TBI in the Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI) Core Study, a prospective, multicenter, cohort study. Univariable and multivariable logistic regression analyses were performed. Discrimination was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals. Findings All biomarkers scaled with clinical severity and care path (ER only, ward admission, or ICU), and with presence of CT abnormalities. GFAP achieved the highest discrimination for predicting CT abnormalities (AUC 0•89 [95%CI 0•87-0•90]), with a 99% likelihood of better discriminating CT-positive patients than clinical characteristics used in contemporary decision rules. In patients with mild TBI, GFAP also showed incremental diagnostic value discrimination increased from 0•84 [95%CI 0•83-0•86] to 0•89 [95%CI 0•87-0•90] when GFAP was included. Results were consistent across strata, and injury severity. Combinations of biomarkers did not improve discrimination compared to GFAP alone. https://www.selleckchem.com/products/glutathione.html Interpretation Currently available biomarkers reflect injury severity, and serum GFAP, measured within 24 h after injury, outperforms clinical characteristics in predicting CT abnormalities. Our results support the further development of serum GFAP assays towards implementation in clinical practice, for which robust clinical assay platforms are required. Funding CENTER-TBI study was supported by the European Union 7th Framework program (EC grant 602150).