https://www.selleckchem.com/products/LDE225(NVP-LDE225).html This study had two main objectives (i) to study the effects of volume conduction on different connectivity metrics (Amplitude Envelope Correlation AEC, Phase Lag Index PLI, and Magnitude Squared Coherence MSCOH), comparing the coupling patterns at electrode- and sensor-level; and (ii) to characterize spontaneous EEG activity during different stages of Alzheimer's disease (AD) continuum by means of three complementary network parameters node degree (k), characteristic path length (L), and clustering coefficient (C). Our results revealed that PLI and AEC are weakly influenced by volume conduction compared to MSCOH, but they are not immune to it. Furthermore, network parameters obtained from PLI showed that AD continuum is characterized by an increase in L and C in low frequency bands, suggesting lower integration and higher segregation as the disease progresses. These network changes reflect the abnormalities during AD continuum and are mainly due to neuronal alterations, because PLI is slightly affected by volume conduction effects.The framework of information dynamics allows to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of a complex network. The information transfer from one process to another can be quantified through Transfer Entropy, and under the assumption of joint Gaussian variables it is strictly related to the concept of Granger Causality (GC). According to the most recent developments in the field, the computation of GC entails representing the processes through a Vector Autoregressive (VAR) model and a state space (SS) model typically identified by means of the Ordinary Least Squares (OLS). In this work, we propose a new identification approach for the VAR and SS models, based on Least Absolute Shrinkage and Selection Operator (LASSO), that has the advantages of maintaining good accuracy even when few data samples are availab