The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays. 1231 upregulated genes and 79 up-accumulated proteins were identified. The data support the secretion of effectors by IC phytotoxins, ROS, proteases, cutinases, plant cell wall-degrading enzymes and plant cell death-inducing proteins. Parallel upregulation of sugar transport and sugar catabolism-encoding genes would indicate a role of IC in nutrition. The data also reveal a substantial remodelling of the IC cell wall and suggest a role for melanin and chitosan in IC function. Lastly, mutagenesis of two upregulated genes in IC identified secreted fasciclin-like proteins as actors in the pathogenesis of B. cinerea. These results support the role of IC in plant penetration and also introduce other unexpected functions for this fungal organ, in colonization, necrotrophy and nutrition of the pathogen.White matter hyperintensities (WMHs) are risk factors for future cognitive impairment and are associated with an abnormal circadian blood pressure (BP) rhythm in patients with hypertension. However, whether this association exists in patients with heart failure (HF) is unclear. We performed a cross-sectional study of hospitalized patients with HF who underwent ambulatory BP monitoring and brain magnetic resonance imaging (MRI). A non-dipper BP pattern was defined as a less then 10% nocturnal BP decline. WMHs on brain MRI scans were quantitated using a novel image analysis software (FUSION FUsed Software for Imaging Of Nervous system). We enrolled 28 hospitalized patients with HF (age 70.0 ± 9.8 years, 64.3% men). In the brain MRI analysis, the non-dipper group had higher WMH volume (18.9 ± 19.8 vs. 7.7 ± 8.3 mL, P = .047) and percentage of WMH/total brain volume (1.31 ± 1.28% vs. 0.55 ± 0.58%, P = .04) than the dipper group. In conclusion, using the newly developed MRI analysis software, we successfully quantitatively measured the volume of WMHs and found that the WMH volume increased 2.4 times in patients with a non-dipper pattern of nocturnal BP compared with those with a normal dipper pattern.The secretomes of filamentous fungi contain a diversity of small secreted cysteine-rich proteins (SSCPs) that have a variety of properties ranging from toxicity to surface activity. Some SSCPs are recognized by other organisms as indicators of fungal presence, but their function in fungi is not fully understood. We detected a new family of fungal surface-active SSCPs (saSSCPs), here named hyphosphere proteins (HFSs). An evolutionary analysis of the HFSs in Pezizomycotina revealed a unique pattern of eight single cysteine residues (C-CXXXC-C-C-C-C-C) and a long evolutionary history of multiple gene duplications and ancient interfungal lateral gene transfers, suggesting their functional significance for fungi with different lifestyles. Interestingly, recombinantly produced saSSCPs from three families (HFSs, hydrophobins and cerato-platanins) showed convergent surface-modulating activity on glass and on poly(ethylene-terephthalate), transforming their surfaces to a moderately hydrophilic state, which significantly favoured subsequent hyphal attachment. The addition of purified saSSCPs to the tomato rhizosphere had mixed effects on hyphal attachment to roots, while all tested saSSCPs had an adverse effect on plant growth in vitro. We propose that the exceptionally high diversity of saSSCPs in Trichoderma and other fungi evolved to efficiently condition various surfaces in the hyphosphere to a fungal-beneficial state.Deep-sea hypersaline anoxic basins (DHABs) are uniquely stratified polyextreme environments generally found in enclosed seas. These environments select for elusive and widely uncharacterized microbes that may be living below the currently recognized window of life on Earth. Still, there is strong evidence of highly specialized active microbial communities in the Kryos, Discovery, and Hephaestus basins located in the Eastern Mediterranean Sea; the only known athalassohaline DHABs. Life is further constrained in these DHABs as near-saturated concentrations of magnesium chloride significantly reduces water activity (aw ) and exerts extreme chaotropic stress, the tendency of a solution to disorder biomolecules. In this review, we provide an overview of microbial adaptations to polyextremes focusing primarily on chaotropicity, summarize current evidence of microbial life within athalassohaline DHABs and describe the difficulties of life detection approaches and sampling within these environments. We also reveal inconsistent measurements of chaotropic activity in the literature highlighting the need for a new methodology. Finally, we generate recommendations for future investigations and discuss the importance of athalassohaline DHAB research to help inform extraterrestrial life detection missions.Covalent Organic Frameworks (COFs) have recently emerged as light-harvesting devices, as well as elegant heterogeneous catalysts. The combination of these two properties into a dual catalyst has not yet been explored. We report a new photosensitive triazine-based COF, decorated with single Ni sites to form a dual catalyst. This crystalline and highly porous catalyst shows excellent catalytic performance in the visible-light-driven catalytic sulfur-carbon cross-coupling reaction. Incorporation of single transition metal sites in a photosensitive COF scaffold with two-component synergistic catalyst in organic transformation is demonstrated for the first time.Apramycin is a clinically promising aminoglycoside antibiotic (AGA). To date, mechanisms underlying the biosynthesis and self-resistance of apramycin remain largely unknown. Here we report that apramycin biosynthesis proceeds through unexpected phosphorylation, deacetylation, and dephosphorylation steps, in which a novel aminoglycoside phosphotransferase (AprU), a putative creatinine amidohydrolase (AprP), and an alkaline phosphatase (AprZ) are involved. Biochemical characterization revealed that AprU specifically phosphorylates 5-OH of a pseudotrisaccharide intermediate, whose N-7' acetyl group is subsequently hydrolyzed by AprP. AprZ is located extracellularly where it removes the phosphate group from a pseudotetrasaccharide intermediate, leading to the maturation of apramycin. https://www.selleckchem.com/products/shield-1.html Intriguingly, 7'-N-acetylated and 5-O-phosphorylated apramycin that were accumulated in ΔaprU and ΔaprZ respectively exhibited significantly reduced antibacterial activities, implying Streptomyces tenebrarius employs C-5 phosphorylation and N-7' acetylation as two strategies to avoid auto-toxicity.