Crop varieties should fulfill multiple requirements, including agronomic performance and product quality. Variety evaluations depend on data generated from field trials and sensory analyses, performed with different levels of participation from farmers and consumers. Such multi-faceted variety evaluation is expensive and time-consuming; hence, any use of these data should be optimized. Data synthesis can help to take advantage of existing and new data, combining data from different sources and combining it with expert knowledge to produce new information and understanding that supports decision-making. Data synthesis for crop variety evaluation can partly build on extant experiences and methods, but it also requires methodological innovation. We review the elements required to achieve data synthesis for crop variety evaluation, including (1) data types required for crop variety evaluation, (2) main challenges in data management and integration, (3) main global initiatives aiming to solve those challenges, (4) current statistical approaches to combine data for crop variety evaluation and (5) existing data synthesis methods used in evaluation of varieties to combine different datasets from multiple data sources. We conclude that currently available methods have the potential to overcome existing barriers to data synthesis and could set in motion a virtuous cycle that will encourage researchers to share data and collaborate on data-driven research.Since the past several decades, poor water solubility of existing and new drugs in the pipeline have remained a challenging issue for the pharmaceutical industry. Literature describes several approaches to improve the overall solubility, dissolution rate, and bioavailability of drugs with poor water solubility. Moreover, the development of amorphous solid dispersion (SD) using suitable polymers and methods have gained considerable importance in the recent past. In the present review, we attempt to discuss the important and industrially scalable thermal strategies for the development of amorphous SD. These include both solvent (spray drying and fluid bed processing) and fusion (hot melt extrusion and KinetiSol®) based techniques. The current review also provides insights into the thermodynamic properties of drugs, their polymer miscibility and solubility, and their molecular dynamics to develop stable and more efficient amorphous SD.Up to 85% of the US adult population carries herpes simplex virus type-1 (HSV-1), with a smaller percentage (22%) infected with HSV-2. Herpesviruses can survive in lytic phase, when the viruses are actively replicating, or in latency, when the virus is functionally dormant in ganglia. Among drugs to treat these infections is acyclovir (ACV). ACV exhibits poor oral bioavailability and a short in vivo half-life; only about 10-15% of ingested drug enters the bloodstream and its half-life is about 3 hours. With those disadvantages and the possibility of poor patient compliance, viral replication may not always be suppressed. To abrogate these shortcomings we propose local distribution via sustained drug release. We present a matrix-based antiherpetic ring, composed of poly(ethylene co-vinyl acetate), that releases ACV directly to the vaginal epithelium. A 30-day in vitro drug release trial showed that approximately 135 +/- 20 μg/day of ACV was consistently released. Rings were nontoxic in cell culture and suppressed primary HSV-1 and HSV-2 replication. We expect these data form the basis for novel interventions in human health, where new prophylactics and therapeutics against genital herpes are truly needed.Tender coconut water (TCW) is a natural plant product rich in phytochemicals and protects against toxic liver injury. However, the mechanism by which TCW inhibits inflammation and tissue damage is unknown. We examined the effect of TCW on primary rat hepatocyte viability, cytokine-induced gene expression and proinflammatory signaling in an in vitro model of sepsis. We observed that TCW improved hepatocyte viability and protected hepatocytes against cytokine-mediated cell death. TCW suppressed IL-1β-mediated increases in Nos2, Tnf, and Il6 mRNA and increased heme oxygenase 1 (HMOX1) protein. TCW inhibited iNOS expression through activation of AKT and JNK pathways since inhibition of PI3K and JNK signaling reduced TCW's effect on iNOS protein expression and activity. These results demonstrate that TCW reduces proinflammatory gene expression and hepatocyte injury produced by elevated inflammatory cytokines and nitric oxide production. Non-alcoholic fatty liver (NAFLD) is a chronic disease worldwide, which poses a huge threat to human health. Xiaochaihu decoction is a well-known traditional Chinese medicine prescription. https://www.selleckchem.com/products/VX-770.html It has been proven effective in treating NAFLD but its mechanism is still unclear. Multiple mechanisms of Xiaochaihu decoction are explored by identifying and connecting potential targets and active ingredients in the treatment of NAFLD. Active ingredients and related targets of seven herbs were collected from TCMSP database. The related targets of NAFLD were obtained from Genes cards database, TDD and OMIM database. The intersected targets of disease targets and drug targets were input into STRING database to construct protein-protein interaction network. DAVID database was used for GO enrichment analysis and KEGG enrichment analysis. After screening and removal of duplicates, a total of 145 active ingredients and 105 potential targets were obtained. PPI network manifested that AKT1, IL6, JUN MAPK8 and STAT3 were the key target proteins. The results of GO enrichment analysis mainly involved cytokine receptor binding, cytokine activity, and heme binding. The results of KEGG analysis suggested that the mechanism mainly involved in AGE-RAGE signaling pathway in diabetic complications, Hepatitis C, fluid shear stress and atherosclerosis. The signaling pathways were further integrated as network manner, including AGE-RAGE signaling pathway in diabetic complications, Fluid shear stress and atherosclerosis, Insulin resistance, HIF-1 signaling pathway, Th17 cell differentiation and IL-17 signaling pathway. The network contained immunity regulation, metabolism regulation and oxidative stress regulation. Xiaochaihu decoction plays a key role in the treatment of NAFLD with multiple targets and pathways. Immunity regulation, metabolism regulation and oxidative stress regulation consist of the crucial regulation cores in mechanism. Design and workflow of this study. Design and workflow of this study.