https://www.selleckchem.com/products/actinomycin-d.html Background Metformin is the most widely used oral antidiabetic agent and can reduce insulin resistance (IR) effectively. Organic cation transporter 1 (encoded by SLC22A1) is responsible for the transport of metformin, and ataxia-telangiectasia-mutated (ATM) is a gene relating to the DNA repair and cell cycle control. The aim of this study was to evaluate if the genetic variants in SLC22A1 rs622342 and ATM rs11212617 could be effective predictors of islet function improvement in patients with type 2 diabetes mellitus (T2DM) on metformin treatment. Methods This cross-sectional study included 111 patients with T2DM treated with metformin. Genotyping was performed by the dideoxy chain-termination method. The homeostatic indexes of IR (HOMA-IR) and beta-cell function (HOMA-BCF) were determined according to the homeostasis model assessment. Results Fasting plasma glucose (FPG) levels, HbA1c levels, and HOMA-IR were significantly higher in patients with the rs622342 AA genotype than in those with C allele (P less then 0.05). However, these significant differences were not observed between rs11212617 genotype groups. Further data analysis revealed that the association between the rs622342 polymorphism and HOMA-IR was gender related, and so was rs11212617 polymorphism and HOMA-BCF. HOMA-IR was significantly higher in males with rs622342 AA genotype than in those with C allele (P=0.021), and HOMA-BCF value was significantly higher in females carrying rs11212617 CC genotype than in those with A allele (P=0.038). The common logarithm (Lg10) of HOMA-BCF was positively correlated with the reciprocal of HbA1c (r = 0.629, P less then 0.001) and negatively associated with Lg10 FPG (r = -0.708, P less then 0.001). Conclusions The variant of rs622342 could be a predictor of insulin sensitivity in patients with T2DM treated with metformin. The association between the rs622342 polymorphism and HOMA-IR and the association between th