atients. Our study could imply the need to consider body sensations additionally as a target for antidepressive treatments. The development of tailored interoceptive interventions in depressive patients represents a promising vision for the future.Once the adsorbent is selected, almost introducing larger specific surface area and more surface functional groups becomes the only way to improve its adsorption performance. However, this approach is generally limited in practical application for intricate and costly engineering steps. Herein, we provided a novel avenue for boosting adsorption activities towards specific metal ions in wastewater. Solar-driven interfacial water evaporation produces the localized temperature field and concentration gradient of metal ions inside small pores, endowing with a new sorption mechanism. By using chemically-treated carbonized wood as all-in-one solar absorption and metal ion adsorption system, we achieved higher water evaporation rate and heavy metal ion removal efficiency than carbonization-only wood reported previously. In particular, this system exhibited a strong dependence of specific metal ion adsorption capacity on solar intensity. Pb2+ adsorption capacity was enhanced by over 225% with the solar intensity increased to 3.0 kW·m-2. This could originate from the formed temperature field localized specially on the surface of adsorbents that not only induces Pb2+ concentration gradient near to solid-liquid interface but also activate inactive adsorption sites. Besides, the chemical-treated & carbonized wood showed excellent cyclic stability and can be directly utilized for wastewater treatment, recovery and reuse.Sediments colonised by three halophyte species, Spartina maritima (Curtis) Fernald, Halimione portulacoides (L.) Aellen and Sarcocornia fruticosa (L.) Scott) and bulk sediment from a SW European salt marsh (Tagus estuary, Portugal) were subjected to sequential extractions and analysed to assess the rare earth elements (REE) geochemical fractionation and to evaluate the plants' role in the mobility and bioavailability of these elements. The results showed that REE were mainly bound to the residual (yttrium and heavy-REE) and carbonate (middle-REE and heavy-REE) fractions, followed by the reducible and oxidisable (light-REE and middle-REE) fractions, while the easily soluble fraction was negligible. This fractionation evidenced a sediment REE mobility mainly dependent not only on carbonates but also on FeMn oxyhydroxides and on organic matter content. On the other hand, REE associated with the reducible and oxidisable fractions, and particularly the redox-sensitive Ce, may become more available, due to the redox condition seasonal changes that occur in salt marshes' sediments promoted by the plants' activity. Moreover, this study demonstrated that the REE bioavailability depends not only on the sediments' characteristics and the plants' seasonal activity but also on the specificity of each element, as demonstrated by the different fractionation patterns observed in the various sedimentary fractions.Black crusts on historic buildings are mainly known for their aesthetic and deteriorative impacts, yet they also can advance air pollution research. Past air pollutants accumulate in distinct layers of weathering crusts. Recent studies have used these crusts to reconstruct pollution to improve our understanding of its effects on stone-built heritage. However, the majority of the studies provide only coarse resolution reconstruction of pollution, able to distinguish between 'inner = old' and 'outer = modern' crust layers. In contrast, very few studies have linked distinct periods of exposure to pollution variations in the composition of these crusts. Here we address this research gap by developing a finer-scale resolution pollution record. Our study explored the unique configuration of limestone sculptures in central Oxford, which have been exposed over the last 350 years to three different periods of atmospheric pollution; the early Industrial Revolution, the Victorian period and the 20th century. When the fistorical pollution.The Caribbean coast is characterized by the presence of mud volcanoes, a secondary phenomenon of volcanism similar to mud diapirs for its development and evolution, but different in terms of geological features and forms. These mud volcanoes are often located close to tectonic faults and oil and gas deposits. Their geological context is dominated by the presence of clay sediments and brackish water, that favors the decomposition of organic material and the formation of methane. Mud volcanoes can thus be an important reservoir of hydrocarbons. This paper aims to fill the existing gap in the knowledge of mud volcanoes (MVs) of Colombia. We analyze the physical and geochemical characteristics of nine onshore mud volcanoes located in the Departments of Atlántico (La Laguna), Bolívar (Las Palomas, La Bonga, Santa Catalina, Yerbabuena, Clemencia, and Membrillal), Cordóba (Los Olivos), and Magdalena (Cañaveral). These structures present a kaolinitic composition, except for La Laguna mud volcano in which smectite is predominant. Apart from tectonic processes, this influences the shape and size of MVs and, also, the type and frequency of eruptions. The abundance of methane in all sites confirms the thermogenic origin of these structures. MVs are often considered landscape attractions as well as a therapeutic resources, but unfortunately they also represent a serious risk for the local communities, due to the frequent unexpected, eruptions, sometimes accompanied by the release of toxic gases or by landslides, that can damage the infrastructures and hurt the population living in the area. The MVs are classified into five vulnerability classes using a novel synthetic index which could improve the understanding of risks associated with the presence of MVs in proximity to towns and infrastructures.This study aimed to investigate the influence of cropping method and substrate type on the fate and the removal of bacterial and antibiotic resistance genes (ARGs) indicators from primary wastewater by constructed wetlands (CWs) during startup and maturation stages. Four small-scale CWs differing in their plantation pattern (monoculture vs. polyculture) and substrate type were constructed and operated under field conditions. While for bacteria, the greatest impact of the cropping method and substrate type on removal was during the startup stage rather than the maturation stage, for ARGs, such impact was significant at both stages. https://www.selleckchem.com/products/rgd-arg-gly-asp-peptides.html During startup, the removal efficiencies of heterotrophic bacteria, fecal coliforms, E. coli, 16S rRNA genes and lacZ increased with the operation time. At maturation, the removal efficiencies were constant and were within the range of 89.2-99.4%, 93.7-98.9%, 89-98.8%, 94.1-99.6% and 92.9-98.7%, respectively. The removal efficiencies of intl1, tetM, intl1, sul1, ermB and total ARGs were also increased with the operation time.