Moreover, a discussion on the current existing problems of RM-ERMs provides important tips and suggestions for future research on RM-ERMs.Fenpiclonil is an agricultural phenylpyrrole fungicide, which raise the concern about its ecotoxicological effects. In this paper, we investigate the indirect photochemical transformation mechanisms, environmental persistence and eco-toxicity of fenpiclonil initiated by various active oxidants (1O2, •OH and SO4•‾) in aquatic environments. The results shown that 1O2 can react with pyrrole ring by cycloaddition pathways to form the endo-peroxides. In addition, •OH and SO4•‾ initial mechanisms are calculated, suggesting that •OH-initiated mechanisms play a dominant role in the degradation process of fenpiclonil at high rate constants (2.26 ×109 M-1 s-1, at 298 K). The kinetic calculation results indicate that high temperature is more favorable for the degradation of fenpiclonil. To better understand the adverse effects of the transformation products formed during the subsequent reaction of •OH-adduct IM10, the computational toxicology has been used for the toxicity estimation. The results show that aquatic toxicity of these products decrease with degradation process, especially the decomposition products (TP3 and TP4). However, TP1 and TP2 are still toxic and developmental toxicant. The study provides guidance for further experimental research and industrial application of fungicide degradation from the perspective of theoretical calculation.The presence of disinfection byproducts (DBPs) in drinking water is a major public health concern, and an effective strategy to limit the formation of these DBPs is to prevent their precursors. In silico prediction from chemical structure would allow rapid identification of precursors and could be used as a prescreening tool to prioritize testing. We present models using machine learning algorithms (i.e., support vector regressor, random forest regressor, and multilayer perceptron regressor) and chemical descriptors as features to predict the formation of haloacetic acids (HAAs). A robust model with good predictivity (i.e., leave-one-out cross-validated Q2 > 0.5) to predict the formation of trichloroacetic acid (TCAA) was developed using a random forest regressor. The number of aromatic bonds, hydrophilicity, and electrotopological descriptors related to electrostatic interactions and the atomic distribution of electronegativity were identified as important predictors of TCAA formation potentials (FPs). However, the prediction of dichloroacetic acid was less accurate, which is congruent with the presence of different types of precursors exhibiting distinct mechanisms. This study demonstrates that nonlinear combinations of general chemical descriptors can adequately estimate HAAFPs, and we hope that our study can be used to predict precursors of other disinfection byproducts based on chemical structures using a similar workflow.In this study, a new process was developed using ClO- and corncob biochar (CB) combined with HAS (a stabilizer) to remove cyanide from gold smelting pulp. The Box-Behnken design was employed to optimize the doses of treatment reagents during cyanide removal. Results showed that the optimal doses of the three reagents were as follows ClO- dose of 20 mg/g dry solid (DS), CB dose of 22 mg/g DS, and an HAS dose of is 24 mg/g DS. The cyanide concentration in the filtrate was the lowest (0.114 mg/L), with a 98.36% removal efficiency after a contact time of 2 h at 25 °C under optimized conditions. https://www.selleckchem.com/products/FK-506-(Tacrolimus).html Compared with those of ClO- and HAS, it was found that the dose of biochar was the dominant factor influencing cyanide removal. Batch sorption experiments of cyanide to biochar indicated that the Langmuir isotherm model fit the sorption data, and the maximum cyanide sorption capacity was expected to be 2.57 ± 0.06 mg/g. Density functional theory (DFT) calculations (interaction energy was -74.42 kcal/mol) indicated that the adsorption peak resulted from cation-π interactions between the cyanide and CB. This study could lead to a novel environmental-friendly approach for the removal of cyanide from gold smelting pulp.In this study, the degradation and mineralization of sulfamethoxazole (SMX) by ozonation and ionizing radiation were investigated respectively, and the performance of the combined process of ozonation and ionizing radiation was evaluated. Results showed that complete degradation of SMX could be obtained by ozonation in 12 min or by ionizing radiation with the absorbed dose of 1.5 kGy. However, the mineralization of SMX was very limited in ozonation and ionizing radiation system, TOC removal efficiency was less than 15% and 27% in single-ozonation and single-radiation process, respectively. The combination of ozonation and radiation process obviously enhanced the mineralization of SMX, TOC removal efficiency increased to 65.7%. Moreover, the ozonation-radiation process also exhibited good performance in the mineralization of sulfamethazine (SMT) and sulfanilamide (SM), suggesting a good application prospect of the combined process in treating wastewater contaminated with antibiotics. In addition, some different intermediate products were identified during SMX degradation in ozonation process and ionizing radiation process by a high-performance liquid chromatography-mass spectrometry (LC-MS), and possible pathways of SMX degradation by ozonation and radiation were proposed.The herbicide metamitron is frequently detected in the environment, and its degradation in soil differs from that in aquatic sediments. In this study, we applied 13C6-metamitron to investigate the differences in microbial activity, metamitron mineralization and metamitron degrading microbial communities between soil and water-sediment systems. Metamitron increased soil respiration, whereas it suppressed respiration in the water-sediment system as compared to controls. Metamitron was mineralized two-fold faster in soil than in the water-sediment. Incorporation of 13C from 13C6-metamitron into Phospholipid fatty acids (PLFAs) was higher in soil than in sediment, suggesting higher activity of metamitron-degrading microorganisms in soil. During the accelerated mineralization of metamitron, biomarkers for Gram-negative, Gram-positive bacteria and actinobacteria dominated within the 13C-PLFAs in soil. Gram-negative bacteria dominated among the metamitron degraders in sediment throughout the incubation period. Actinobacteria, and actinobacteria and fungi were the main consumers of necromass of primary degraders in soil and water-sediment, respectively.