Conventional influenza vaccines are based on predicting the circulating viruses year by year, conferring limited effectiveness since the antigenicity of vaccine strains does not always match the circulating viruses. This necessitates development of universal influenza vaccines that provide broader and lasting protection against pan-influenza viruses. The discovery of the highly conserved immunogens (epitopes) of influenza viruses provides attractive targets for universal vaccine design. Here we review the current understanding with broadly protective immunogens (epitopes) and discuss several important considerations to achieve the goal of universal influenza vaccines.Myxofibrosarcoma (MFS) is among the most aggressive and complex sarcoma types that require novel therapeutic approaches for improved clinical outcomes. MFS displays highly complex karyotypes, and frequent alterations in p53 signaling and cell cycle checkpoint genes as well as loss-of-function mutations in NF1 and PTEN have been reported. The effects of radiotherapy and chemotherapy on MFS are limited, and complete surgical resection is the only curative treatment. Thus, the development of novel therapeutic strategies for MFS has long been long desired for MFS. Patient-derived cell lines are an essential tool for basic and translational research in oncology. However, public cell banks provide only a limited number of MFS cell lines. In this study, we aimed to develop a novel patient-derived MFS cell line, which was established from the primary tumor tissue of a 71-year-old male patient with MFS and was named NCC-MFS2-C1. A single-nucleotide polymorphism assay revealed that NCC-MFS2-C1 cells exhibited gain and loss of genetic loci. NCC-MFS2-C1 cells were maintained as a monolayer culture for over 24 passages for 10 months. The cells exhibited spindle-like morphology, continuous growth, and capacity for spheroid formation and invasion. Screening of 213 anticancer agents revealed that bortezomib, gemcitabine, romidepsin, and topotecan at low concentrations inhibited the proliferation of NCC-MFS2-C1 cells. In conclusion, we established a novel MFS cell line, NCC-MFS2-C1, which can be used for studying the molecular mechanisms underlying tumor development and for the in vitro screening of anti-cancer drugs. We aim to summarize recent insights and provide an up-to-date overview on the role of intra-aortic balloon pump (IABP) counterpulsation in cardiogenic shock (CS). In the largest randomized controlled trial (RCT) of patients with CS after acute myocardial infarction (AMICS), IABP did not lower mortality. However, recent data suggest a role for IABP in patients who have persistent ischemia after revascularization. Moreover, in the growing population of CS not caused by acute coronary syndrome (ACS), multiple retrospective studies and one small RCT report on significant hemodynamic improvement following (early) initiation of IABP support, which allowed bridging of most patients to recovery or definitive therapies like heart transplant or a left ventricular assist device (LVAD). Routine use of IABP in patients with AMICS is not recommended, but many patients with CS either from ischemic or non-ischemic cause may benefit from IABP at least for hemodynamic improvement in the short term. There is a need for a lah ACS, as well as in patients with non-ACS CS. Pulmonary arterial hypertension (PAH) is a progressive disease with high mortality. A greater understanding of the physiology and function of the cardiovascular system in PAH will help improve survival. This review covers the latest advances within cardiovascular magnetic resonance imaging (CMR) regarding diagnosis, evaluation of treatment, and prognostication of patients with PAH. New CMR measures that have been proven relevant in PAH include measures of ventricular and atrial volumes and function, tissue characterization, pulmonary artery velocities, and arterio-ventricular coupling. CMR markers carry prognostic information relevant for clinical care such as treatment response and thereby can affect survival. Future research should investigate if CMR, as a non-invasive method, can improve existing measures or even provide new and better measures in the diagnosis, evaluation of treatment, and determination of prognosis of PAH. New CMR measures that have been proven relevant in PAH include measures of ventricular and atrial volumes and function, tissue characterization, pulmonary artery velocities, and arterio-ventricular coupling. CMR markers carry prognostic information relevant for clinical care such as treatment response and thereby can affect survival. Future research should investigate if CMR, as a non-invasive method, can improve existing measures or even provide new and better measures in the diagnosis, evaluation of treatment, and determination of prognosis of PAH.Malaria is a tropical human disease, caused by protozoan parasites, wherein a significant number of the world's population is at risk. Annually, more than 219 million new cases are reported. Although there are prevention treatments, there are no highly and widely effective licensed anti-malarial vaccines available for use. Opportunities for utilization of plant-based vaccines as novel platforms for developing safe, reliable, and affordable treatments offer promise for developing such a vaccine against malaria. In this study, a Malchloroplast candidate vaccine was designed, composed of segments of AMA1 and MSP1 proteins, two epitopes of Plasmodium falciparum, along with a GK1 peptide from Taenia solium as adjuvant, and this was expressed in tobacco chloroplasts. https://www.selleckchem.com/products/Cytarabine(Cytosar-U).html Transplastomic tobacco lines were generated using biolistic transformation, and these were confirmed to carry the synthetic gene construct. Expression of the synthetic GK1 peptide was confirmed using RT-PCR and Western blots. Furthermore, the GK1 peptide was detected by HPLC at levels of up to 6 µg g-1 dry weight of tobacco leaf tissue. The plant-derived Malchloroplast candidate vaccine was subsequently tested in BALB/c female mice following subcutaneous administration, and was found to elicit specific humoral responses. Furthermore, components of this candidate vaccine were recognized by antibodies in Plasmodium falciparum malaria patients and were immunogenic in test mice. Thus, this study provided a 'proof of concept' for a promising plant-based candidate subunit vaccine against malaria.