The imaging resolution of scanning electrochemical microscopy (SECM) depends strongly on the tip electrode size and the tip-substrate distance. Herein, etched glass encapsulation was applied to fabricate a gold disk electrode, and the size of the tip electrode was accurately determined from the steady-state limiting current. Referring to the theoretical research carried out by our predecessors, the formula for the imaging resolution was derived, followed by the imaging of gold spots and cells with the prepared microelectrodes of different sizes and with different tip-substrate distances. A depth scan was performed to generate 2D current maps of the gold spot relative to the position of the microelectrode in the x-z plane. https://www.selleckchem.com/products/trastuzumab.html Probe approach curves and horizontal sweeps were obtained from one depth scan image by simply extracting vertical and horizontal cross-sectional lines, and further characterized by comparison with simulated curves through modeling of the experimental system. The experimental results were basically consistent with the theory, revealing that the highest imaging resolution can be obtained with the smallest tip electrode when d/a = 1, and when the size of the tip electrode is fixed the smallest tip-substrate distance can give the highest imaging resolution.Transplantable cell encapsulation systems present a promising approach to deliver a therapeutic solution from hormone-producing cells for the treatment of endocrine diseases like type 1 diabetes. However, the development of a broadly effective and safe transplantation system has been challenging. While some current micro-sized capsules have been optimized for adequate nutrient and metabolic transport, they lack the robustness and retrievability for the clinical safety translation that macro-devices may offer. An existing challenge to be addressed in the current macro-devices is their configuration which may lead to unsatisfactory mass transfer. Here, we design and characterize a millimeter-size particle system of poly-ethylene glycol (PEG) featuring internal toroidal spiral channels, called toroidal spiral particles (TSPs). The characteristic internal structure of the TSPs allows for large encapsulation capacity and large surface area available to all the encapsulated cell mass for effective molecular diffusiutic cells for type 1 diabetes treatment and may also be applicable for other cell therapies.Lung cancer is one of deadliest and most life threatening cancer types. Cytokeratin 19 fragment antigen 21-1 (CYFRA 21-1) is a significant biomarker for the diagnosis of non-small cell lung cancer (NSCLC). Due to these reasons, a novel electrochemical immunosensor based on a silicon nitride (Si3N4)-molybdenum disulfide (MoS2) composite on multi-walled carbon nanotubes (Si3N4/MoS2-MWCNTs) as an electrochemical sensor platform and core-shell type magnetic mesoporous silica nanoparticles@gold nanoparticles (MMSNs@AuNPs) as a signal amplifier was presented for CYFRA21-1 detection in this study. Capture antibody (Ab1) immobilization on a Si3N4/MoS2-MWCNT modified glassy carbon electrode (Si3N4/MoS2-MWCNTs/GCE) was firstly successfully performed by stable electrostatic/ionic interactions between the -NH2 groups of the capture antibody and the polar groups of Si3N4/MoS2. Then, specific antibody-antigen interactions between the electrochemical sensor platform and the signal amplifier formed a novel voltammetric CYFRA21-1 immunosensor. The prepared composite materials and electrochemical sensor surfaces were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A linearity range of 0.01-1.0 pg mL-1 and a low detection limit (LOD) of 2.00 fg mL-1 were also obtained for analytical applications. Thus, the proposed immunosensor based on Si3N4/MoS2-MWCNTs and MMSNs@AuNPs has great potential for medical diagnosis of lung cancer.In this study, a facile strategy for the scalable synthesis of cobalt and nitrogen co-doped mesoporous carbon (Co-N/C) is reported. Structural characterization demonstrated that Co and N were successfully co-doped in the highly porous carbon. Graphitization of porous carbon was achieved by the introduction of cobalt species. The degree of graphitization of Co-N/C could be further promoted by increasing the calcination temperature. By taking advantage of the excellent mass and electron transfer kinetics attributed to the high specific surface area, high porosity and high graphitization, the obtained Co-N/C exhibited good electrochemical activity towards H2O2 reduction and excellent sensing performance for the electrochemical detection of H2O2. The Co-N/C-950 catalyst obtained at 950 °C showed good electrochemical sensing performance with a detection limit of 2 μM and a wide linear response over the concentration range from 0.03 mM to 13 mM. Meanwhile, Co-N/C exhibited high selectivity toward the detection of H2O2 in the presence of possible interferences during the applications such as NaCl, glucose, ascorbic acid and so on. The results confirm that Co-N/C could be used as an efficient electrocatalyst to fabricate electrochemical sensing devices.The combination of chemometric and green metric tools adds up to synergistic effects at method development, being highly compatible with green analytical chemistry (GAC). In the present study, both strategies were applied for the development of an ultrasound-assisted extraction mediated by Natural Deep Eutectic Solvent (UA-NADES). The Box-Behnken Design combined with multiple responses and desirability functions allowed the effective optimization of the proposed extractive methodology using an alternative green solvent. Considering the obtained results, a green UA-NADES extraction and chromatographic determination of phenolic compounds in Lactuca sativa samples were developed. Finally, the recent Analytical GREEnness metric approach was applied, and scores were compared with recent miniaturized approaches for the extraction/determination of phenolic compounds in lettuce. The results of the AGREE analysis highlight the greenness of the proposed methodology.