The magnetic Weyl fermion originates from the time reversal symmetry (TRS)-breaking in magnetic crystalline structures, where the topology and magnetism entangle with each other. Therefore, the magnetic Weyl fermion is expected to be effectively tuned by the magnetic field and electrical field, which holds promise for future topologically protected electronics. However, the electrical field control of the magnetic Weyl fermion has rarely been reported, which is prevented by the limited number of identified magnetic Weyl solids. Here, the electric field control of the magnetic Weyl fermion is demonstrated in an epitaxial SrRuO3 (111) thin film. The magnetic Weyl fermion in the SrRuO3 films is indicated by the chiral anomaly induced magnetotransport, and is verified by the observed Weyl nodes in the electronic structures characterized by the angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. Through the ionic-liquid gating experiment, the effective manipulation of the Weyl fermion by electric field is demonstrated, in terms of the sign-change of the ordinary Hall effect, the nonmonotonic tuning of the anomalous Hall effect, and the observation of the linear magnetoresistance under proper gating voltages. The work may stimulate the searching and tuning of Weyl fermions in other magnetic materials, which are promising in energy-efficient electronics.A complete randomised block design experiment was conducted to examine the effects of mushroom powder (MP) and vitamin D2 -enriched mushroom powder (MPD2 ) on growth performance, faecal scores, coefficient of apparent total tract digestibility (CATTD) of nutrients and selected microflora in weaned pigs up to day 35 post-weaning. One hundred and ninety-two weaned pigs (7.8kg [SD 1.08kg]) were blocked according to live weight, sex and litter of origin and randomly assigned to the following (T1) control diet; (T2) control diet +MP; (T3) control diet + MPD2 ; and (T4) control diet +zinc oxide (ZnO) (n = 12 replicates/treatment). Mushroom powders were included at 2 g/kg of feed achieving a β-glucan content of 200ppm. ZnO was included at 3100 mg/kg feed and halved to 1550 mg/kg after 21 days. Vitamin D content was enhanced in MPD2 using synthetic UVB exposure to obtain a vitamin D2 level of 100 µg/kg of feed. Faecal samples were collected on day 14 for microbial and nutrient digestibility analysis. There was no difference (p > 0.05) in ADG, GF, faecal scores, microbial populations and CATTD of nutrients in pigs supplemented with MP or MPD2 compared with the control diet. The supplementation of MP and MPD2 caused a reduction (p less then 0.05) in feed intake compared with the control and ZnO diet throughout the 35-day experimental period. ZnO supplementation increased ADG and ADFI (p less then 0.05) during the first period (D0-21) compared with pigs offered MP and MPD2 . In conclusion, MP and MPD2 supplementation resulted in similar ADG, GF, faecal scores compared with the control but were not comparable to ZnO, mainly due to a reduction in feed intake.2D Ruddlesden-Popper perovskites exhibit great potential in optoelectronic devices for superior stability compared with their 3D counterparts. However, to achieve a high level of device performance, it is crucial but challenging to regulate the phase distribution of 2D perovskites to facilitate charge carrier transfer. Herein, using a solvent additive method (adding a small amount of dimethyl sulfoxide (DMSO) in N,N-dimethylformamide (DMF)) combined with a hot-casting process, the phase distribution of (PEA)2 MA3 Pb4 I13 (PEA+ = C6 H5 CH2 CH2 NH3 + , MA+ = CH3 NH3 + ) perovskite can be well controlled and the Fermi level of perovskites along the film thickness direction can achieve gradient distribution. The increased built-in potential, oriented crystal, and improved crystal quality jointly contribute to the high photoresponse of devices in the entire response spectrum range. The optimum device exhibits a characteristic detection peak at 570 nm with large responsivity/detectivity (0.44 A W-1 /3.38 × 1012 Jones), ultrafast response speed with a rise/fall time of 20.8/20.6 µs, and improved stability. This work suggests the possibility of manipulating the ordered phase distribution of 2D perovskites toward high-performance and stable optoelectronic conversion devices.Phonons with chirality determine the optical helicity of inelastic light scattering processes due to their nonzero angular momentum. Here it is shown that 2D magnetic CrBr3 hosts chiral phonons at the Brillouin-zone center. These chiral phonons are linear combinations of the doubly-degenerate Eg phonons, and the phonon eigenmodes exhibit clockwise and counterclockwise rotational vibrations corresponding to angular momenta of l = ± 1. Such Eg chiral phonons completely switch the polarization of incident circularly polarized light. On the other hand, the non-degenerate non-chiral Ag phonons display a giant magneto-optical effect under an external out-of-plane magnetic field, rotating the plane of polarization of the scattered linearly polarized light. The corresponding degree of polarization of the scattered light changes from 91% to -68% as the magnetic field strength increases from 0 to 5 T. https://www.selleckchem.com/ In contrast, the chiral Eg modes display no field dependence. The results lay a foundation for the study of phonon chirality and magneto-optical phenomena in 2D magnetic materials, as well as their related applications, such as the phonon Hall effect, topological photonics, and Raman lasing.The orientation of facial (fac) tris-cyclometalated iridium complexes in doped films prepared by vacuum deposition is investigated by altering the physical shape and electronic asymmetry in the molecular structure. Angle-dependent photoluminescence spectroscopy and Fourier-plane imaging microscopy show that the orientation of roughly spherical fac-tris(2-phenylpyridyl)iridium (Ir(ppy)3 ) is isotropic, whereas complexes that are oblate spheroids, fac-tris(mesityl-2-phenyl-1H-imidazole)iridium (Ir(mi)3 ) and fac-tris((3,5-dimethyl-[1,1'-biphenyl]-4-yl)-2-phenyl-1H-imidazole)iridium (Ir(mip)3 ), have a net horizontal alignment of their transition dipole moments. Optical anisotropy factors of 0.26 and 0.15, respectively, are obtained from the latter complexes when doped into tris(4-(9H-carbazol-9-yl)phenyl)amine host thin films. The horizontal alignment is attributed to the favorable van der Waals interaction between the oblate Ir complexes and host material. Trifluoromethyl groups substituted on one polar face of the Ir(ppy)3 and Ir(mi)3 complexes introduce chemical asymmetries in the molecules at the expense of their oblate shapes.