Gefitinib is an effective treatment for patients with locally advanced non-small cell lung cancer. However, it is associated with cardiotoxicity that can limit its clinical use. Liraglutide, a glucagon-like peptide 1 receptor agonist, showed potent cardioprotective effects with the mechanism is yet to be elucidated. Therefore, this study aimed to determine the efficiency of liraglutide in protecting the heart from damage induced by gefitinib. Adult male Wistar rats were randomly divided into control group, liraglutide group (200 µg/kg by i.p. injection), gefitinib group (30 mg/kg orally) and liraglutide plus gefitinib group. After 28 days, blood and tissue samples were collected for histopathological, biochemical, gene and protein analysis. We demonstrated that gefitinib treatment (30 mg/kg) resulted in cardiac damage as evidenced by histopathological studies. Furthermore, serum Creatine kinase-MB (CK-MB), N-terminal pro B-type natriuretic peptide (NT-proBNP) and cardiac Troponin-I (cTnI) were markedly elevated in gefitinib group. Pretreatment with liraglutide (200 µg/kg), however, restored the elevation in serum markers and diminished gefitinib-induced cardiac damage. Moreover, liraglutide improved the gene and protein levels of anti-oxidant (superoxide dismutase) and decreased the oxidative stress marker (NF-κB). https://www.selleckchem.com/products/pifithrin-alpha.html Mechanistically, liraglutide offered protection through upregulation of the survival kinases (ERK1/2 and Akt) and downregulation of stress-activated kinases (JNK and P38). In this study, we provide evidence that liraglutide protects the heart from gefitinib-induced cardiac damage through its anti-oxidant property and through the activation of survival kinases. © 2020 The Author(s).Background Worldwide, the prescribing pattern of the Nonsteroidal Anti-inflammatory Drugs (NSAIDs) has increased. They are considered highly effective medications in controlling various conditions including inflammatory diseases. They are associated with various adverse effects including gastrointestinal bleeding and ulcer and renal toxicity though. These adverse effects are generally potentiated when NSAIDs are co-prescribed with other drugs that share similar adverse effects and toxicities. Developing severe side effects from NSAIDs is more prone among elderly patients. Hence, it is crucial to evaluate prescribing pattern of these agents to prevent/decrease the number of unwanted side effects caused by NSAIDs. Aim The aim of this study is to assess the prescribing pattern of NSAIDs among elderly and the co-prescribing of NSAIDs and different interacting drugs, which could lead to more incidences of NSAIDs-induced toxicities among Jordanian elderly patients. Settings and Methodology A multicenter retrospectistinal toxicity, were high. Strict measurements and action plans should be taken by prescribers to optimize the medical treatment in elderly through maximizing the benefits and decreasing the unwanted side effects. © 2020 The Author(s).Breast cancer is the most common cancer that majorly affects female. The present study is focused on exploring the potential anticancer activity of 2-((1, 2, 3, 4-Tetrahydroquinolin-1-yl) (4 methoxyphenyl) methyl) phenol (THMPP), against human breast cancer. The mechanism of action, activation of specific signaling pathways, structural activity relationship and drug-likeness properties of THMPP remains elusive. Cell proliferation and viability assay, caspase enzyme activity, DNA fragmentation and FITC/Annexin V, AO/EtBr staining, RT-PCR, QSAR and ADME analysis were executed to understand the mode of action of the drug. The effect of THMPP on multiple breast cancer cell lines (MCF-7 and SkBr3), and non-tumorigenic cell line (H9C2) was assessed by MTT assay. THMPP at IC50 concentration of 83.23 μM and 113.94 μM, induced cell death in MCF-7 and SkBr3 cells, respectively. Increased level of caspase-3 and -9, fragmentation of DNA, translocation of phosphatidylserine membrane and morphological changes in the cells confirmed the effect of THMPP in inducing the apoptosis. Gene expression analysis has shown that THMPP was able to downregulate the expression of PI3K/S6K1 genes, possibly via EGFR signaling pathway in both the cell lines, MCF-7 and SkBr3. Further, molecular docking also confirms the potential binding of THMPP with EGFR. QSAR and ADME analysis proved THMPP as an effective anti-breast cancer drug, exhibiting important pharmacological properties. Overall, the results suggest that THMPP induced cell death might be regulated by EGFR signaling pathway which augments THMPP being developed as a potential candidate for treating breast cancer. © 2020 The Author(s).The current study was executed for method development, validation and to estimate the concentration of protopine in methanolic extract of Fumaria indica by high-performance thin-layer chromatography (HPTLC). Isolation of bioactive compounds was carried out using the mobile phase, tolueneethyl acetatediethyl amine (82.50.5 v/v/v), and detected at wavelength 290 nm. This method was validated for precision, specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), etc. The calibration range was found to be 500-5000 ng/spot for the bioactive compound. Protopine was separated with an Rf value of 0.22 ± 0.03. The method was validated for linearity (r2 ≥ 0.996 ± 0.082), accuracy 98.75-102.12%), and RSD of precision (0.49-2.07) with a calibration curve range of 500.00-5000.00 ng/spot. The LOD and LOQ were found to be 83.92 ng/spot and 254.30 ng/spot., respectively. The Central Composite design expert was applied for the validation of robustness. Three independent variables such as the volume of toluene in solvent system, chamber saturation time and wavelength were investigated. The results indicated that a slight change in these variables had no significant effect on the peak response. This developed HPTLC method is simple, precise, robust, specific, rapid, and cost effective. It could be used for quality control study and quantification of protopine in the plant extract and different herbal formulations containing the plant species. © 2020 The Author(s).