A head animation sub-system with graphical user interfaces was also developed. Model accuracy and system performances were analyzed. RESULTS The comparison with MRI-based model shows a very good accuracy level (distance deviation of ~1 mm in neutral position and an error range of [2-3 mm] for different facial mimic positions) for the generated model from our system. Moreover, the system speed can be optimized to reach a high framerate (up to 60 fps) during different head and facial mimic animations. CONCLUSIONS This study presents a novel computer vision system for tracking simultaneously subject-specific rigid head and non-rigid facial mimic movements in real time. In perspectives, serious game technology will be integrated into this system towards a full computer-aided decision support system for facial rehabilitation. V.Kinetic non-linear metabolic models are used extensively in medical research and increasingly for clinical diagnostic purposes. An example of such a model is the Glucose Minimal Model by Bergman and colleagues [1]. This model is similar to pharmacokinetic/pharmacodynamic models in that like pharmacokinetic/pharmacodynamic models, it is based on a small number of fairly simple ordinary differential equations and it aims to determine how the changing concentration of one blood constituent influences the concentration of another constituent. Although such models may appear prima facie, to be relatively simple, they have gained a reputation of being difficult to fit to data, especially in a consistent and repeatable fashion. Consequently, researchers and clinicians have generally relied on dedicated software packages to do this type of modeling. This article describes the use of statistical and spreadsheet software for fitting the Glucose Minimal Model to data from an insulin modified intravenous glucose tolerance test (IM-IVGTT). A novel aspect of the modeling is that the differential equations that are normally used to describe insulin action and the disposition of plasma glucose are first solved and expressed in their explicit forms so as to facilitate the estimation of Glucose Minimal Model parameters using the nonlinear (nl) optimization procedure within statistical and spreadsheet software. The most important clinical parameter obtained from the Glucose Minimal Model is insulin sensitivity (SI). Using IM-IVGTT data from 42 horses in one experiment and 48 horses in a second experiment, we demonstrate that estimates of SI derived from the Glucose Minimal Model fitted to data using STATA and Excel, are highly concordant with SI estimates obtained using the industry standard software, MinMod Millennium. This work demonstrates that there is potential for statistical and spreadsheet software to be applied to a wide range of kinetic non-linear modeling problems. V.BACKGROUND Nanofluids are known for better heat transfer characteristics in many heat exchanger devices due to their enhanced heat transfer abilities. Recently, scientists give the idea of nanofluid which is the mixture of base fluid and solid nanoparticles having very small size. For physical phenomenon of conventional fluids by mean of suspensions of nanoparticles in base fluids and prompted produce a new composite known as "nanofluids". These composite contain the nanoparticles with 1-100 nm sized which are suspended in the base fluids. Here we have considered a subclass of non-Newtonian fluid called Oldroyd-B fluid. The fluid motion over the disk surface is produced due to the rotation as well as radially stretching of disk. Further, the impact of non-linear thermal radiation and heat generation/absorption is introduced to visualize the heat transfer behavior. The convective boundary is also taken into consideration in order to investigate the fluid thermal characteristics. The novel features of thermophosfer rate at the wall is noticed against thermoporesis and Brownian motion parameters, respectively. The concentration gradient at the wall reduces with an increment in mass transfer parameter. V.Sorption onto clays (montmorillonite and kaolinite), oxidation and sorption by manganese oxides (synthesized MnO and natural MnO), and coupled sorption-oxidation experiments were conducted for the removal of antibiotics sulfadiazine (SDZ) and ciprofloxacin (CIP) at pH 5 and 8. Individual sorption and oxidation modelling were carried out using the first-order kinetic model. A coupled sorption-oxidation kinetic model was developed to predict the simultaneous sorption and oxidation process. The coupled sorption-oxidation enhanced the antibiotic sorption, with the first-order sorption rate constants in the simultaneous presence of clays and manganese oxides (ksorp) being higher than those with clays only (ksorp0). In contrast, a depression was observed; the first-order oxidation and sorption combination rate constants in the simultaneous presence of manganese oxides and clays (kMnO) were lower than those with manganese oxides only (kMnO0). In the coupled sorption-oxidation reaction, 13.5-62.5% of SDZ and CIP removal was attributed to the sorption. The SDZ and CIP species distributions at pH 5 affected the coupled sorption and oxidation systems more than those at pH 8. The best removal efficiency was achieved by the montmorillonite-synthesized MnO combination, mainly due to the higher surface area (ABET) and pore size of montmorillonite and synthesized MnO combination compared to other clays and manganese oxides combinations. To investigate the effect of gestational and lactational nonylphenol (NP) exposure on airway inflammation in ovalbumin (OVA)-induced asthmatic pups. https://www.selleckchem.com/products/CP-673451.html Dams were gavaged with NP at dose levels of 25 mg/kg/day (low dose), 50 mg/kg/day (middle dose), 100 mg/kg/day (high dose) and groundnut oil alone (vehicle control) respectively from gestational day 7 to postnatal day 21. The results showed that the NP content in the lung tissues of pups in the 100 mg/kg NP group was significantly higher than that of the control group (P = 0.004). In the 100 mg/kg NP group, the infiltration of lymphocytes and eosinophils with thicken smooth muscle layer and inflammatory cells in the lumen were observed in the lung tissues of pups. Osmiophilic lamellar bodies were found in the cytoplasm of type II epithelial cells; mitochondria were clearly swollen. Compared with the control group, the levels of interleukin-4 (IL-4) in BALF (P = 0.042) and ovalbumin-specific serum immunoglobulin E (OVA-sIgE) (P = 0.005) in the OVA group were significantly higher.