https://www.selleckchem.com/products/OSI-906.html Furthermore, SA-containing conjugates could not only display similar in vitro characteristics in terms of binding affinity when compared to reference compounds, but may even induce beneficial effects on the pharmacokinetic properties of these radiopharmaceuticals.X-ray-induced photodynamic therapy (XPDT) is overwhelmingly superior in treating deep-seated cancers. However, limitations remain, owing to a combination of the poor scintillation performance of the nanoscintillator, low energy transfer efficiency of the therapeutic nanoplatform, and hypoxic environment presented in the tumor tissue. Collectively, these reduce the curative effect of XPDT. Here, we report a highly efficient, low-dose XPDT realized by systematic optimization from scintillation efficiency, nanoplatform structure, to therapeutic approach. We developed a biocompatible, codoped CaF2 nanoscintillator that emitted sufficiently green radioluminescence that was bright enough to be seen by the naked eye. Using dendrimers as a framework, we built a nanoplatform featuring a dual-core-satellite architecture, which enabled both procedurally and spatially separate dual-loading of therapeutic agents. This strategy allowed for the fabrication of a combined XPDT and antiangiogenic therapy, resulting in a therapeutic system capable of simultaneous tumor attacks. After exposure to ultralow dose radiation, XPDT resulted in marked tumor reduction while the antiangiogenic drug effectively blocked tumor vascularization exacerbated by XPDT-mediated hypoxia, rendering a pronounced synergy effect. This system also showed high biosafety, as the agents adopted had been used clinically and both Ca and F elements were widespread in the human body. Taken together, the findings presented here provided a reference for the construction of complex, multiloading architecture in coordination with structural complexity and functional diversification. This work provided a safer and