Reductive transformation of organic contaminants by FeS in anoxic environments has been documented previously, whereas the transformation in oxic environments remains poorly understood. Here we show that phenol can be efficiently oxidized in oxic FeS suspension at circumneutral pH value. We found that hydroxyl radicals (•OH) were the predominant reactive oxidant and that a higher O2 content accelerated phenol degradation. Phenol oxidation depended on •OH production and utilization efficiency, i.e., phenol degraded per •OH produced. Low FeS contents (≤1 g/L) produced less •OH but higher utilization efficiency, while high contents produced more •OH but lower utilization efficiency. Consequently, the most favorable conditions for phenol oxidation occurred during the long-term interaction between dissolved O2 and low levels of FeS (i.e., ≤1 g/L). Mössbauer spectroscopy suggests that FeS oxidation to lepidocrocite initially produced an intermediate Fe(II) phase that could be explained by the apparent preferential oxidation of structural S(-II) relative to Fe(II), rendering a higher initial •OH yield upon unit of Fe(II) oxidation. Trichloroethylene can be also oxidized under similar conditions. Our results demonstrate that oxidative degradation of organic contaminants during the oxygenation of FeS can be a significant but currently underestimated pathway in both natural and engineered systems.T7 RNA polymerase (T7RNAP) and T7 promoter are powerful genetic components, thus a plasmid-driven T7 (PDT7) genetic circuit could be broadly applied for synthetic biology. However, the limited knowledge of the toxicity and instability of such a system still restricts its application. Herein, we constructed 16 constitutive genetic circuts of PDT7 and investigated the orthogonal effects in toxicity and instability. The T7 toxicity was elucidated from the construction processes and cell growth characterization, showing the importance of optimal orthogonality for PDT7. Besides, a protein analysis was performed to validate how the T7 system affected cell metabolism and led to the instability. The application of constitutive PDT7 in functional protein expressions, including carbonic anhydrase, lysine decarboxylase, and 5-ALA synthetase was demonstrated. https://www.selleckchem.com/products/quinine-dihydrochloride.html Furthermore, PDT7 working as a genetic amplifier had been designed for E. coli cell-based biosensors, which illustrated the opportunities in the future of PDT7 used in synthetic biology.Waters coproduced with hydrocarbons from unconventional oil and gas reservoirs such as the hydraulically fractured Middle Devonian Marcellus Shale in the Appalachian Basin, USA, contain high levels of total dissolved solids (TDS), including Ba, which has been variously ascribed to drilling mud dissolution, interaction with pore fluids or shale exchangeable sites, or fluid migration through fractures. Here, we show that Marcellus Shale produced waters contain some of the heaviest Ba (high 138Ba/134Ba) measured to date (δ138Ba = +0.36‰ to +1.49‰ ± 0.06‰) and are distinct from overlying Upper Devonian/Lower Mississippian reservoirs (δ138Ba = -0.83‰ to -0.52‰). Marcellus Shale produced water values do not overlap with drilling mud barite (δ138Ba ≈ 0.0‰) and are significantly offset from Ba reservoirs within the producing portion of the Marcellus Shale, including exchangeable sites and carbonate cement. Precipitation, desorption, and diffusion processes are insufficient or in the wrong direction to produce the observed enrichments in heavy Ba. We hypothesize that the produced water is derived primarily from brines adjacent to and most likely below the Marcellus Shale, although such deep brines have not yet been obtained for Ba isotope analysis. Barium isotopes show promise for tracking formation waters and for understanding water-rock interaction under downhole conditions.Vanadium contamination is a growing environmental hazard worldwide. Aqueous vanadate (HxVVO4(3-x)-(aq)) concentrations are often controlled by surface complexation with metal (oxyhydr)oxides in oxic environments. However, the geochemical behavior of this toxic redox-sensitive oxyanion in anoxic environments is poorly constrained. Here, we describe results of batch experiments to determine kinetics and mechanisms of aqueous H2VVO4- (100 μM) removal under anoxic conditions in suspensions (2.0 g L-1) of magnetite, siderite, pyrite, and mackinawite. We present results of parallel experiments using ferrihydrite (2.0 g L-1) and Fe2+(aq) (200 μM) for comparison. Siderite and mackinawite reached near complete removal (46 μmol g-1) of aqueous vanadate after 3 h and rates were generally consistent with ferrihydrite, whereas magnetite removed 18 μmol g-1 of aqueous vanadate after 48 h and uptake by pyrite was limited. Removal during reaction with Fe2+(aq) was observed after 8 h, concomitant with precipitation of secondary Fe phases. X-ray absorption spectroscopy revealed V(V) reduction to V(IV) and formation of bidentate corner-sharing surface complexes on magnetite and siderite, and with Fe2+(aq) reaction products. These data also suggest that V(IV) is incorporated into the mackinawite structure. Overall, we demonstrate that Fe(II)-bearing phases can promote aqueous vanadate attenuation and, therefore, limit dissolved V concentrations in anoxic environments.BACKGROUND It has previously been demonstrated that surgically resected small-cell lung cancer (SCLC) patients could benefit from prophylactic cranial irradiation (PCI). However, PCI in patients without lymph node involvement remains controversial. This study includes a larger sample size to evaluate the benefit of PCI therapy in this specific population. METHODS The records of surgically resected SCLC patients without lymph node involvement (N0M0) in Shanghai Chest Hospital were retrospectively reviewed. RESULTS Between January 2006 and May 2017, a total of 146 cases of surgically resected SCLC without lymph node involvement were included. A total of 46 patients received PCI therapy and 100 patients received no therapy. During the observation period, 12.0% (12/100) of the patients who did not receive PCI therapy developed brain metastases while 10.9% (5/46) of patients who received PCI therapy developed brain metastases. With regard to time to recurrence, no significant difference was observed among the groups (P = 0.