Nanoplatelets collided on the ultramicroelectrode at an angle, θ, enhancing the electroactive area, resulting in a sharp increase in current. After the collision, the nanoplatelets reoriented to lay flat on the electrode surface, which manifested as a return to the baseline current in the amperometric current-time response. Through correlated finite element simulations, we extracted single nanoplatelet angular velocities on the order of 0.5-2°/ms. These results are a necessary step forward in understanding nanoparticle dynamics at the nanoscale.Mid-infrared (mid-IR) spectroscopy is an incisive tool for studying structures and dynamics of complicated molecules in condensed phases. Developing a compact and broadband mid-IR spectrometer has thus been a long-standing challenge. Here, we show that a highly coherent and broadband mid-IR frequency comb can be generated by using an intrapulse difference-frequency-generation with a train of pulses from a few-cycle pulse Tisapphire oscillator. By tightly focusing the oscillator output beam into a single-pass, fan-out-type periodically poled lithium niobate crystal and tilting the orientation of the crystal, we show that a mid-IR frequency comb with more than an octave spectral bandwidth from 1550 cm-1 (46 THz) to 3650 cm-1 (110 THz) and vanishing carrier-envelope-offset phase can be generated. Using two coherent mid-IR frequency combs with different repetition frequencies, we demonstrate that a broadband mid-IR dual-frequency comb spectroscopy of aromatic compounds or amino acids in solutions is feasible. We thus anticipate that researchers will find our mid-IR frequency combs useful for developing ultrafast and broadband linear and nonlinear IR spectroscopy of chemically reactive or biologically important molecules in condensed phases.Subtle changes in chemical bonds may result in dramatic revolutions in magnetic properties in solid-state materials. MnPt5P, a derivative of the rare-earth-free ferromagnetic MnPt5As, was discovered and is presented in this work. MnPt5P was synthesized, and its crystal structure and chemical composition were characterized by X-ray diffraction as well as energy-dispersive X-ray spectroscopy. Accordingly, MnPt5P crystallizes in the layered tetragonal structure with the space group P4/mmm (No. 123), in which the face-shared Mn@Pt12 polyhedral layers are separated by P layers. In contrast to the ferromagnetism observed in MnPt5As, the magnetic properties measurements on MnPt5P show antiferromagnetic ordering occurs at ∼188 K with a strong magnetic anisotropy in and out of the ab-plane. Moreover, a spin-flop transition appears when a high magnetic field is applied. An A-type antiferromagnetic structure was obtained from the analysis of powder neutron diffraction (PND) patterns collected at 150 and 9 K. Calculated electronic structures imply that hybridization of Mn-3d and Pt-5d orbitals is critical for both the structural stability and observed magnetic properties. Semiempirical molecular orbitals calculations on both MnPt5P and MnPt5As indicate that the lack of 4p character on the P atoms at the highest occupied molecular orbital (HOMO) in MnPt5P may cause the different magnetic behavior in MnPt5P compared to MnPt5As. The discovery of MnPt5P, along with our previously reported MnPt5As, parametrizes the end points of a tunable system to study the chemical bonding which tunes the magnetic ordering from ferromagnetism to antiferromagnetism with the strong spin-orbit coupling (SOC) effect.In a recent article, Jadhav and Barigou ( Langmuir 2020, 36 (7), 1699-1708) investigated the question of the existence of stable bulk nanobubbles in water generated by hydrodynamic cavitation, ultrasound cavitation, and the addition of an organic compound (namely, ethanol) to water. They firmly conclude that these procedures result in stable bulk nanobubbles. However, a number of previous works documented that the nanoentities observed in water upon such procedures are not nanobubbles. https://www.selleckchem.com/products/Nutlin-3.html Here, we analyze work of Jadhav and Barigou and show that conclusions regarding the nanobubble nature of the nanoentities are incorrect and are due to the choice of experimental techniques with weak sensitivity, methodical issues in the use of otherwise proper experimental techniques, and ambiguous outcomes of the rest of experiments.Temperature-responsive polyion complex (PIC) micelles were prepared by using two diblock copolymers composed of a sulfobetaine chain (poly(sulfopropyldimethylammonium propylacrylamide), PSPP) and ionic chains (poly(sodium styrenesulfonate), PSSNa, or poly(3-(methacrylamido)propyltrimethylammonium chloride), PMAPTAC). Because the core is PIC and the shell is sulfobetaine with UCST-type temperature response, the corona expands and contracts in response to temperature. To control the size and uniformity of the PIC micelles, the collapse of PIC micelles by salt addition and the reforming behavior by dialysis were investigated by transmittance, DLS, TEM, AFM, and 1H NMR measurements. Investigation of the ionic species dependence of the added salt in the collapse behavior of PIC micelles revealed that it was dependent on the anionic species, although no dependence on the cationic species was observed. Its effectiveness was in the order of I- > Br- > Cl- > F-, which is in agreement with the order of ionic species with strong structural destruction in the Hofmeister series. Heterogeneous and large PIC micelles were formed by the simple mixing method. They collapsed by salt addition and were reformed by the dialysis method to form uniform and smaller PIC micelles. This is considered to be because a uniform and smaller micelle is formed to reform in equilibrium state by dialysis. The temperature response of PIC micelles formed by the simple mixing method and PIC micelles reformed by dialysis showed nearly the same temperature-transmittance curves. These results indicate that the temperature response of PIC micelles is affected by the concentration rather than the hydrodynamic radius. Furthermore, the stability of PIC micelles was found to be affected by the concentration temperature (the temperature at the time of concentration).