https://www.selleckchem.com/ The visual analysis of letter strings and digit strings is done by two separate cognitive processes. Recent studies have hypothesized that these processes are not only separate but also qualitatively different, in that they may encode information specific to numbers or to words. To examine this hypothesis and to shed further light on the visual analysis of numbers, we asked adults to read aloud multi-digit strings presented to them for brief durations. Their performance was better in digits on the number's left side than in digits farther to the right, with better performance in the two outer digits than their neighbors. This indicates the digits were processed serially, from left to right. Visual similarity of digits increased the likelihood of errors, and when a digit migrated to an incorrect position, it was most often to an adjacent location. Interestingly, the positions of 0 and 1 were encoded better than the positions of 2-9, and 2-9 were identified better when they were next to 0 or 1. To accommodate these findings, we propose a detailed model for the visual analysis of digit strings. The model assumes imperfect digit detectors in which a digit's visual information leaks to adjacent locations, and a compensation mechanism that inhibits this leakage. Crucially, the compensating inhibition is stronger for 0 and 1 than for the digits 2-9, presumably because of the importance of 0 and 1 in the number system. This sensitivity to 0 and 1 makes the visual analyzer specifically adapted to numbers, not words, and may be one of the brain's reasons to implement the visual analysis of numbers and words in two separate cognitive processes.Developmental Language Disorder occurs in up to 10% of children and many of these children have difficulty retrieving words in their receptive vocabulary. Such word-finding difficulties (WFD) can impact social development and educational outcomes. This research aims to develop the evidence-base for supporting