https://www.selleckchem.com/products/bb-94.html Q188R and p.S135L mutants are the most pathogenic and destabilizing. In agreement with these results, MMS analysis demonstrated that the p.Q188R and p.S135L mutants possess higher deviation patterns, reduced compactness, and intramolecular H-bonds of the protein. This could be due to the physicochemical modifications that occurred in the mutants p.S135L and p.Q188R compared to the native. Evolutionary conservation analysis revealed that the most prevalent mutations positions were conserved among different species except N314. The proposed research study is intended to provide a basis for the therapeutic development of drugs and future treatment of classical galactosemia and possibly other genetic diseases using chaperone therapy. Different bioinformatic and data-mining approaches have been used for the analysis of proteins. Here, we describe a novel, robust, and reliable approach for comparative analysis of a large number of proteins by combining Image Processing Techniques and Convolutional Deep Neural Network (IPT-CNN). As proof of principle, we used IPT-CNN to predict different subtypes of Influenza A virus (IAV). Over 8000 sequences of surface proteins haemagglutinin (HA) and neuraminidase (NA) from different IAV subtypes were used to create polynomial or binary vector datasets. The datasets were then converted into binary images. Analysis of these images enabled the classification of IAV subtypes with 100% accuracy and, compared to non-image-based approaches, within a shorter time frame. The proteome-based IPT-CNN approach described here may be used for analysis and proteome-based classification of other proteins. BACKGROUND Implantation of biodegradable bone scaffold is regarded as a promising way to repair bone defects, and the coupling process of scaffold degradation and bone formation is influenced by the physical-exercise-induced mechanical stimulus. METHODS The scaffold degradation was modeled by a mechanica