The use of the dual recombinase-mediated intersectional genetic approach involving Cre-loxP and Dre-rox has significantly enhanced the precision of in vivo lineage tracing, as well as gene manipulation. However, this approach is limited by the small number of Dre recombinase driver constructs available. Here, we developed more than 70 new intersectional drivers to better target diverse cell lineages. To highlight their applicability, we used these new tools to study the in vivo adipogenic fate of perivascular progenitors, which revealed that PDGFRa+ but not PDGFRa-PDGFRb+ perivascular cells are the endogenous progenitors of adult adipocytes. In addition to lineage tracing, we used members of this new suite of drivers to more specifically knock out genes in complex tissues, such as white adipocytes and lymphatic vessels, that heretofore cannot be selectively targeted by conventional Cre drivers alone. In summary, these new transgenic tools expand the intersectional genetic approach while enhancing its precision.We propose a comprehensive method for reconstructing the whole-genome chromatin ensemble from the Hi-C data. The procedure starts from Markov state modeling (MSM), delineating the structural hierarchy of chromatin organization with partitioning and effective interactions archetypal for corresponding levels of hierarchy. The stochastic embedding procedure introduced in this work provides the 3D ensemble reconstruction, using effective interactions obtained by the MSM as the input. As a result, we obtain the structural ensemble of a genome, allowing one to model the functional and the cell-type variability in the chromatin structure. The whole-genome reconstructions performed on the human B lymphoblastoid (GM12878) and lung fibroblast (IMR90) Hi-C data unravel distinctions in their morphologies and in the spatial arrangement of intermingling chromosomal territories, paving the way to studies of chromatin dynamics, developmental changes, and conformational transitions taking place in normal cells and during potential pathological developments.Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and γ-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in ∼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-β-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.Astrocytes play both physiological and pathological roles in maintaining central nervous system (CNS) function. Here, we review the varied functions of astrocytes and how these might change in subsets of reactive astrocytes. We review the current understanding of astrocyte interactions with microglia and the vasculature and protective barriers in the central nervous system as well as highlight recent insights into physiologic and reactive astrocyte sub-states identified by transcriptional profiling. Our goal is to stimulate inquiry into how these molecular identifiers link to specific functional changes in astrocytes and to define the implications of these heterogeneous molecular and functional changes in brain function and pathology. Defining these complex interactions has the potential to yield new therapies in CNS injury, infection, and disease.The microbiota impedes pathogen invasion of the intestinal ecosystem, a phenomenon termed colonization resistance. In an upcoming issue of Cell, Stacy et al. describe host-initiated metabolite pathways that functionally alter the microbiota after primary infection, thereby augmenting colonization resistance to subsequent infection.Substantial variations of tumor immune properties exist among cancer patients, but the contributing factors underlying those variations are poorly understood. In this issue of Immunity, Sayaman et al. uncover associations between germline genetic variants and tumor immune properties, revealing candidate causal genes.Type 1 innate lymphoid cells (ILC1s) regulate inflammation in the tissues; however, their role in anti-viral immunity remains largely unknown. In this issue of Immunity, Shannon et al. https://www.selleckchem.com/products/lw-6.html report that ILC1s invoke an anti-viral effect by producing interferon (IFN)γ at homeostasis, thereby limiting viral replication in the oral mucosa.The human lung harbors diverse macrophages that provide barrier immunity and maintain homeostasis, but their precursors are unclear. In this issue of Immunity, Evren et al. use a humanized mouse model to discern that classical monocytes give rise to alveolar and interstitial macrophages, whereas non-classical monocytes contribute to pulmonary intravascular macrophages.