4%). The common possible contributors include use of a stylet, cuff overdistention, multiple attempts to adjust the position of a DLT, difficult intubation, and use of an oversized DLT. Most of the airway ruptures were diagnosed intraoperatively (n = 138, 82.7%). Pneumomediastinum, air leakage, hypoxemia, and subcutaneous emphysema were the common clinical manifestations. Most patients were treated with surgical repair (n = 147, 78.6%). The mortality of the patients with airway rupture by DLTs was 8.8%. Age, sex, site of rupture, diagnosis timing, and method of treatment were not found to be associated with mortality.Acute respiratory distress syndrome (ARDS) is a significant cause of morbidity and mortality in the intensive care unit (ICU) and is characterized by lung epithelial and endothelial cell injury, with increased permeability of the alveolar-capillary membrane, leading to pulmonary edema, severe hypoxia, and difficulty with ventilation. The most common cause of ARDS is sepsis, and currently, treatment of ARDS and sepsis has consisted mostly of supportive care because targeted therapies have largely been unsuccessful. The molecular mechanisms behind ARDS remain elusive. Recently, a number of microRNAs (miRNAs) identified through high-throughput screening studies in ARDS patients and preclinical animal models have suggested a role for miRNA in the pathophysiology of ARDS. miRNAs are small noncoding RNAs ranging from 18 to 24 nucleotides that regulate gene expression via inhibition of the target mRNA translation or by targeting complementary mRNA for early degradation. Unsurprisingly, some miRNAs that are differentially expressed in ARDS overlap with those important in sepsis. In addition, circulatory miRNA may be useful as biomarkers or as targets for pharmacologic therapy. This can be revolutionary in a syndrome that has neither a measurable indicator of the disease nor a targeted therapy. While there are currently no miRNA-based therapies targeted for ARDS, therapies targeting miRNA have reached phase II clinical trials for the treatment of a wide range of diseases. Further studies may yield a unique miRNA profile pattern that serves as a biomarker or as targets for miRNA-based pharmacologic therapy. In this review, we discuss miRNAs that have been found to play a role in ARDS and sepsis, the potential mechanism of how particular miRNAs may contribute to the pathophysiology of ARDS, and strategies for pharmacologically targeting miRNA as therapy.Assessment of urine concentrations of sodium, chloride, and potassium is a widely available, rapid, and low-cost diagnostic option for the management of critically ill patients. Urine electrolytes have long been suggested in the diagnostic workup of hypovolemia, kidney injury, and acid-base and electrolyte disturbances. However, due to the wide range of normal reference values and challenges in interpretation, their use is controversial. To clarify their potential role in managing critical patients, we reviewed existing evidence on the use of urine electrolytes for diagnostic and therapeutic evaluation and assessment in critical illness. https://www.selleckchem.com/products/sirtinol.html This review will describe the normal physiology of water and electrolyte excretion, summarize the use of urine electrolytes in hypovolemia, acute kidney injury, acid-base, and electrolyte disorders, and suggest some practical flowcharts for the potential use of urine electrolytes in daily critical care practice.Some neurological complications following surgery have been related to a mismatch in cerebral oxygen supply and demand that may either lead to more subtle changes of brain function or overt complications like stroke or coma. Discovery of a perioperative neurological complication may be outside the treatment window, thereby making prevention an important focus. Early commercial devices used differential spectroscopy to measure relative changes from baseline of 2 chromophores oxy- and deoxyhemoglobin. It was the introduction of spatially resolved spectroscopy techniques that allowed near-infrared spectroscopy (NIRS)-based cerebral oximetry as we know it today. Modern cerebral oximeters measure the hemoglobin saturation of blood in a specific "optical field" containing arterial, capillary, and venous blood, not tissue oxygenation itself. Multiple cerebral oximeters are commercially available, all of which have technical differences that make them noninterchangeable. The mechanism and meaning of these measurementntext of the physiologic variables that affect them; (3) using caution in comparing cerebral oximetry values between different manufacturers; (4) using preoperative cerebral oximetry to identify patients at increased risk of adverse outcomes after cardiac surgery; (5) using intraoperative cerebral oximetry indexed to preinduction baseline to identify patients at increased risk of adverse outcomes after cardiac surgery; (6) using cerebral oximetry to identify and guide management of acute cerebral malperfusion during cardiac surgery; (7) using an intraoperative cerebral oximetry-guided interventional algorithm to reduce intensive care unit (ICU) length of stay after cardiac surgery. Additionally, there was agreement that (8) there is insufficient evidence to recommend using intraoperative cerebral oximetry to reduce mortality or organ-specific morbidity after cardiac surgery; (9) there is insufficient evidence to recommend using intraoperative cerebral oximetry to improve outcomes after noncardiac surgery. Inadvertent perioperative hypothermia is a common complication of surgery, and active body surface warming (ABSW) systems are used to prevent adverse clinical outcomes. Prior data on certain outcomes are equivocal (ie, blood loss) or limited (ie, pain and opioid consumption). The objective of this study was to provide an updated review on the effect of ABSW on clinical outcomes and temperature maintenance. We conducted a systematic review of randomized controlled trials evaluating ABSW systems compared to nonactive warming controls in noncardiac surgeries. Outcomes studied included postoperative pain scores and opioid consumption (primary outcomes) and other perioperative clinical variables such as temperature changes, blood loss, and wound infection (secondary outcomes). We searched Ovid MEDLINE daily, Ovid MEDLINE, EMBASE, CINHAL, Cochrane CENTRAL, and Web of Science from inception to June 2019. Quality of evidence (QoE) was rated according to the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach.