In NZVI-based nanomaterials (GNZVI and NZVI), electrostatic attraction played a limited role while surface complexation was dominant in removal of both the arsenic species. In case of M-based nanomaterials (GM and M), As(V) removal was controlled by electrostatic attraction while As(III) adsorption was ligand exchange and surface complexation. GNZVI has the potential for field application for drinking water arsenic removal.Chlorinated ethenes (CEs) are most problematic pollutants in groundwater. Dehalogenating bacteria, and in particular organohalide-respiring bacteria (OHRB), can transform PCE to ethene under anaerobic conditions, and thus contribute to bioremediation of contaminated sites. Current approaches to characterize in situ biodegradation of CEs include hydrochemical analyses, quantification of the abundance of key species (e.g. Dehalococcoides mccartyi) and dehalogenase genes (pceA, vcrA, bvcA and tceA) involved in different steps of organohalide respiration (OHR) by qPCR, and compound-specific isotope analysis (CSIA) of CEs. Here we combined these approaches with sequencing of 16S rRNA gene amplicons to consider both OHRB and bacterial taxa involved in CE transformation at a multi-contaminated site. Integrated analysis of hydrogeochemical characteristics, gene abundances and bacterial diversity shows that bacterial diversity and OHRB mainly correlated with hydrogeochemical conditions, suggesting that pollutant exposure acts as a central driver of bacterial diversity. CSIA, abundances of four reductive dehalogenase encoding genes and the prevalence of Dehalococcoides highlighted sustained PCE, DCE and VC degradation in several wells of the polluted plume. These results suggest that bacterial taxa associated with OHR play an essential role in natural attenuation of CEs, and that representatives of taxa including Dehalobacterium and Desulfosporosinus co-occur with Dehalococcoides. Overall, our study emphasizes the benefits of combining several approaches to evaluate the interplay between the dynamics of bacterial diversity in CE-polluted plumes and in situ degradation of CEs, and to contribute to a more robust assessment of natural attenuation at multi-polluted sites.The avian colibacillosis outbreak is a disease that threatens public health, poultry production, and economic interests, even after antibiotic feed addition. It is known that avian pathogenic E. coli is a major pathogenic factor; however, the systemic characteristics of gut flora in disease samples and how pathogens grow remain unknown. To study these issues in depth, we used the whole microbial genome shotgun sequencing technique to compare entire microbes in diseased and healthy broiler chickens. We found that it was not only E. coli that increased substantially, but most pathogenic flora also increased significantly in diseased samples. Subsequently, we proved that aminoglycoside antibiotic resistance genes were mainly found in non-E. coli strains. This suggests that E. coli survival under antibiotic stress was due to the cooperative resistance from non-E. coli strains. Among all these increasing strains, attaching and effacing pathogens could damage host intestinal epithelial cells to release oxygen in the gut to make the microenvironment more adaptable for E. coli strains. Furthermore, we observed that the functions of the T4SS/T6SS secretion system were dramatically enhanced, which could help E. coli to compete and enlarge their living spaces. Ultimately, pathogenic E. coli accumulated to cause avian colibacillosis. This study provides a new insight into intestinal microecology in diseased individuals, which would propose new treatment options for avian colibacillosis from a metagenome perspective.The factors controlling per- and polyfluoroalkyl substances (PFAS) environmental fate remains the subject of considerable debate and study. As surfactants, PFAS readily partition to interfaces, a property that controls their transport and fate. A group contribution model is developed to predict the extent to which PFAS partitions to the air-water interface. Langmuir adsorption and Szyszkowski equation parameters were fitted to literature air-water surface tension data for a range of PFAS and conventional hydrocarbon surfactants. This approach enabled the prediction of the impact of the hydrophilic head group, and other molecular components, on PFAS interfacial partitioning in instances when PFAS data are unavailable but analogous hydrocarbon surfactant data are available. The model was extended to predict a range of parameters (i.e., solubility, critical micelle concentration (CMC), KD, Koc and Kow) that are used to predict PFAS environmental fate, including long-range PFAS transport and in multimedia models. Model predictions were consistent with laboratory and field derived parameters reported in the literature. Additionally, the proposed model can predict the impact of pH and speciation on the extent of PFAS interfacial partitioning, a potentially important feature for understanding the behaviors of some ionizable PFAS, such as fluorinated carboxylic acids. The proposed model provides a conceptually straightforward method to predict a wide range of environmental fate parameters for a wide range of PFAS. As such, the model is a powerful tool that can be used to determine parameters needed to predict PFAS environmental fate.Resistant to degradation, plastic litter poses a long-term threat to marine ecosystems. https://www.selleckchem.com/products/npd4928.html Biodegradable materials have been developed to replace conventional plastics, but little is known of their impacts and degradation in marine environments. A 14-week laboratory experiment was conducted to investigate the sorption of polycyclic aromatic hydrocarbons (PAHs) to conventional (polystyrene PS and polyamide PA) and bio-based, biodegradable plastic films (cellulose acetate CA and poly-L-lactic acid PLLA), and to examine the composition of bacterial communities colonizing these materials. Mesoplastics (1 cm2) of these materials were incubated in sediment and seawater collected from two sites in the Gulf of Finland, on the coast of the highly urbanized area of Helsinki, Finland. PS sorbed more PAHs than did the other plastic types at both sites, and the concentration of PAHs was consistently and considerably smaller in plastics than in the sediment. In general, the plastic bacterial biofilms resembled those in the surrounding media (water and/or sediment).