https://www.selleckchem.com/products/sgc-cbp30.html Diffusion tensor magnetic resonance imaging revealed deficits in all three major forebrain commissures, as well as long-range hypoconnectivity between cortical and subcortical regions. These data identify USP9X as a key regulator of brain formation and function, and provide insights into the neurodevelopmental syndrome arising as a consequence of USP9X mutations in patients. Sweetpotato and potato are fast-maturing staple crops and widely consumed in low- and middle-income countries. Conventional breeding to biofortify these crops with iron could improve iron intakes. To our knowledge, iron absorption from sweetpotato and potato has not been assessed. The aim was to assess iron absorption from regular and iron-biofortified orange-fleshed sweetpotato in Malawi and yellow-fleshed potato and iron-biofortified purple-fleshed potato in Peru. We conducted 2 randomized, multiple-meal studies in generally healthy, iron-depleted women of reproductive age. Malawian women (n=24) received 400 g regular or biofortified sweetpotato test meals and Peruvian women (n=35) received 500 g regular or biofortified potato test meals. Women consumed the meals at breakfast for 2 wk and were then crossed over to the other variety. We labeled the test meals with 57Fe or 58Fe and measured cumulative erythrocyte incorporation of the labels 14 d after completion of each test-meal sequence to calculate iations were likely the major inhibitors of iron absorption. These trials were registered at www.clinicaltrials.gov as NCT03840031 (Malawi) and NCT04216030 (Peru). FIA from regular yellow-fleshed potato was remarkably high, at 28%. Iron absorbed from both potato test meals covered 33% of the daily absorbed iron requirement for women of reproductive age, while the biofortified orange-fleshed sweetpotato test meal covered 18% of this requirement. High polyphenol concentrations were likely the major inhibitors of iron absorption. These trials were re